Citation: | DANG Weichao, SHI Yunlong, BAI Shangwang, GAO Gaimei, LIU Chunxia. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Journal of Mine Automation, 2021, 47(12): 98-105. DOI: 10.13272/j.issn.1671-251x.2021030087 |
[1] |
党伟超,张泽杰,白尚旺,等.基于改进双流法的井下配电室巡检行为识别[J].工矿自动化, 2020,46(4):75-80.
DANG Weichao,ZHANG Zejie,BAI Shangwang,et al.Inspection behavior recognition of underground power distribution room based on improved two-stream CNN method[J].Industry and Mine Automation,2020,46(4):75-80.
|
[2] |
杨清翔,吕晨,冯晨晨,等.煤矿井下行人检测算法[J].工矿自动化,2020,46(1):80-84.
YANG Qingxiang,LYU Chen,FENG Chenchen,et al.Pedestrian detection algorithm of coal mine underground[J].Industry and Mine Automation,2020,46(1):80-84.
|
[3] |
莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967-973.
MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(6):967-973.
|
[4] |
王琳,卫晨,李伟山,等.结合金字塔池化模块的YOLOv2的井下行人检测[J].计算机工程与应用,2019,55(3):133-139.
WANG Lin,WEI Chen,LI Weishan,et al.Pedestrian detection based on YOLOv2 with pyramid pooling module in underground coal mine[J].Computer Engineering and Applications,2019,55(3):133-139.
|
[5] |
李伟山,卫晨,王琳.改进的Faster RCNN煤矿井下行人检测算法[J].计算机工程与应用,2019,55(4):200-207.
LI Weishan,WEI Chen,WANG Lin.Improved Faster RCNN approach for pedestrian detection in underground coal mine[J].Computer Engineering and Applications,2019,55(4):200-207.
|
[6] |
李现国,李斌,刘宗鹏,等.井下视频行人检测方法[J].工矿自动化,2020,46(2):54-58.
LI Xianguo,LI Bin,LIU Zongpeng,et al.Underground video pedestrian detection method[J].Industry and Mine Automation,2020,46(2):54-58.
|
[7] |
王勇.煤矿井下人员视频图像识别跟踪的研究与应用[J].电子测量技术,2020,43(1):28-31.
WANG Yong.Research and application of video image recognition and tracking for underground personnel in coal mine[J].Electronic Measurement Technology,2020,43(1):28-31.
|
[8] |
ZHOU Bolei,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:2921-2929.
|
[9] |
WANG Limin,XIONG Yuanjun,LIN Dahua,et al.UntrimmedNets for weakly supervised action recognition and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:6402-6411.
|
[10] |
SINGH K K,YONG J L.Hide-and-seek:forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,2017:3524-3533.
|
[11] |
ZHONG Jiaxing,LI Nannan,KONG Weijie,et al.Step-by-step erasion,one-by-one collection:a weakly supervised temporal action detector[C]//Proceedings of the 26th ACM International Conference on Multimedia,New York,2018:35-44.
|
[12] |
JOAO C,ANDREW Z.Quo vadis,action recognition?a new model and the Kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:4724-4733.
|
[13] |
VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,New York,2017:6000-6010.
|
[14] |
KINGMA D P,WELLING M.Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations,2013.
|
[15] |
IDREES H,ZAMIR A R,JIANG Yugang,et al.The THUMOS challenge on action recognition for videos "in the wild"[J].Computer Vision and Image Understanding,2017,155:1-23.
|
1. |
陈生凯,明平田,申宁. 青海某金矿安全监管视频AI智能系统建设. 黄金. 2025(01): 20-23+36+6 .
![]() | |
2. |
张珂. 井工煤矿智能化基础理论及关键技术. 煤矿机电. 2024(02): 35-38+45 .
![]() | |
3. |
江鹤,程德强,乙夫迪,汪鹏,崔文,寇旗旗. 新一代信息技术在智能矿山中的研究与应用综述. 工矿自动化. 2024(11): 1-16 .
![]() |