Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
GUO Qianqian, CUI Lizhen, YANG Yong, et al. PDR algorithm for precise positioning of underground personnel based on LSTM personalized step size estimation[J]. Industry and Mine Automation,2022,48(1):33-38.  doi: 10.13272/j.issn.1671-251x.2021070052
Citation: GUO Qianqian, CUI Lizhen, YANG Yong, et al. PDR algorithm for precise positioning of underground personnel based on LSTM personalized step size estimation[J]. Industry and Mine Automation,2022,48(1):33-38.  doi: 10.13272/j.issn.1671-251x.2021070052

PDR algorithm for precise positioning of underground personnel based on LSTM personalized step size estimation

doi: 10.13272/j.issn.1671-251x.2021070052
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-12-30
  • Publish Date: 2022-01-20
  • The traditional pedestrian dead reckoning (PDR) algorithm has low positioning precision due to the accumulated errors of step size and heading, which can not meet the requirements of precise positioning of underground personnel. In order to solve the problem, a PDR algorithm for precise positioning of underground personnel based on long short-term memory (LSTM) personalized step size estimation is proposed. Firstly, the acceleration and gyroscope inertia information in the movement of underground personnel is collected, and the movement distance of each step is calculated to construct step size data. The LSTM model of personalized step size estimation of the underground personnel is obtained through off-line training. Secondly, in the online prediction stage, the underground personnel movement data such as acceleration, gyroscope and geomagnetism are collected in real-time through the mine intrinsically safe smart phone. The underground personnel movement step and step size of each step are obtained by using the step detection algorithm and personalized step size estimation model respectively. The heading angle is obtained by using the Kalman filtering and heading estimation algorithm. Finally, the current position of underground personnel is predicted according to step size estimation and heading angle. In Inner Mongolia Ordos Gaotouyao Coal Mine, the underground personnel movement data is collected for testing, and the results show as follows. The PDR algorithm for precise positioning of underground personnel based on LSTM personalized step size estimation has a step detection precision of 96.5% and a step size prediction precision of 90%. The algorithm has a relative positioning error of 2.33% in the real underground environment, which improves the personnel positioning precision in coal mine.

     

  • loading
  • [1]
    李晨辉, 甄杰, 祝会忠, 等. 复杂环境下的超宽带高精度定位算法[J]. 测绘科学,2020,45(1):4-10.

    LI Chenhui, ZHEN Jie, ZHU Huizhong, et al. Ultra wideband high precision positioning algorithm in complex environment[J]. Science of Surveying and Mapping,2020,45(1):4-10.
    [2]
    YU N, ZHAN X, ZHAO S, et al, A precise dead reckoning algorithm based on bluetooth and multiple sensors[J]. IEEE Internet Things Journal, 2018, 5(1): 336-351.
    [3]
    孙哲星. 煤矿井下人员精确定位方法[J]. 煤炭科学技术,2018,46(3):130-134.

    SUN Zhexing. Accurate positioning method of underground personnel in coal mine[J]. Coal Science and Technology,2018,46(3):130-134.
    [4]
    孙延鑫, 毛善君, 苏颖, 等. 改进的井下人员定位PDR算法研究[J]. 工矿自动化,2021,47(1):43-48.

    SUN Yanxin, MAO Shanjun, SU Ying, et al. Research on improved PDR algorithm for underground personnel positioning[J]. Industry and Mine Automation,2021,47(1):43-48.
    [5]
    郭娅婷, 杨君, 甘露. 基于改进PDR与RSSI融合的定位算法[J]. 传感技术学报,2020,33(7):1027-1032. doi: 10.3969/j.issn.1004-1699.2020.07.016

    GUO Yating, YANG Jun, GAN Lu. Localization algorithm based on improved PDR and RSSI fusion[J]. Journal of Sensor Technology,2020,33(7):1027-1032. doi: 10.3969/j.issn.1004-1699.2020.07.016
    [6]
    WEINBERG H. Using the ADXL202 in pedometer and personal navigation applications[EB/OL]. (2016-09-23) [2021-06-15].https://www.docin.com/p-1743985325.html.
    [7]
    KIM J W, HAN J J, HWANG D H, et al. A step, stride and heading determination for the pedestrian navigation system[J]. Journal of Global Positioning Systems,2004,3(1/2):273-279.
    [8]
    SCARLETT J. Enhancing the performance of pedometers using a single accelerometer [EB/OL]. (2020-06-02) [2021-06-15].https://www.86ic.net/qiche/xinnengyuan/44427.html.
    [9]
    HAN G, GROVES P D . Context determination for adaptive navigation using multiple sensors on a smartphone [C]//Ion Gnss, 2016: 12-16.
    [10]
    HANNINK J, KAUTZ T, PASLUOSTA C, et al. Mobile stride length estimation with deep convolutional neural networks[J]. IEEE Biomedical and Health Informatics,2018,22(2):354-362. doi: 10.1109/JBHI.2017.2679486
    [11]
    张荣辉, 贾宏光, 陈涛, 等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学精密工程,2008,16(10):1963-1970. doi: 10.3321/j.issn:1004-924X.2008.10.029

    ZHANG Ronghui, JIA Hongguang, CHEN Tao, et al. Attitude calculation of strapdown inertial navigation system based on quaternion method[J]. Optics and Precision Engineering,2008,16(10):1963-1970. doi: 10.3321/j.issn:1004-924X.2008.10.029
    [12]
    肖宇. 基于互补滤波算法的四旋翼飞行器姿态和高度解算[J]. 工业控制计算机,2016,29(10):94-96. doi: 10.3969/j.issn.1001-182X.2016.10.045

    XIAO Yu. Attitude and height estimation of quad-rotor aircraft based on complementary filter[J]. Industrial Control Computer,2016,29(10):94-96. doi: 10.3969/j.issn.1001-182X.2016.10.045
    [13]
    YADAV N, BLEAKLEY C. Accurate orientation estimation using AHRS under conditions of magnetic distortion[J]. Sensors,2014,14(11):20008-20024. doi: 10.3390/s141120008
    [14]
    WANG Qu, LUO Haiyong, YE Langlang, et al. Personalized stride-length estimation based on active online learning[J]. IEEE Internet of Things Journal,2020,7(6):4885-4897. doi: 10.1109/JIOT.2020.2971318
    [15]
    毕京学, 汪云甲, 曹鸿基, 等. 一种波峰波谷检测的智能手机计步算法[J]. 中国惯性技术学报,2020,28(3):287-292.

    BI Jingxue, WANG Yunjia, CAO Hongji, et al. A step counting algorithm for smartphone with peak-valley detection[J]. Journal of Chinese Inertial Technology,2020,28(3):287-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (266) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return