SUN Yanxin, MAO Shanjun, SU Ying, YANG Meng. Research on improved PDR algorithm for underground personnel positioning[J]. Journal of Mine Automation, 2021, 47(1): 43-48. DOI: 10.13272/j.issn.1671-251x.2020080086
Citation: SUN Yanxin, MAO Shanjun, SU Ying, YANG Meng. Research on improved PDR algorithm for underground personnel positioning[J]. Journal of Mine Automation, 2021, 47(1): 43-48. DOI: 10.13272/j.issn.1671-251x.2020080086

Research on improved PDR algorithm for underground personnel positioning

More Information
  • As the traditional pedestrian dead reckoning (PDR) algorithm being used for underground personnel positioning, the positioning error gradually increases due to the cumulative error of the step frequency detection, step length estimation and heading estimation phases. Moreover, the commonly used error correction methods such as zero speed correction, heading drift elimination and gait signal optimization cannot change the inherent defects of the PDR algorithm, and the positioning accuracy needs to be improved. It is proposed to use an improved peak detection method to achieve step frequency detection in the PDR algorithm, and to achieve step length estimation based on a deep recurrent neural network (RNN). The improved PDR algorithm is used for underground personnel positioning. Firstly, cell phone accelerometer, gyroscope and magnetometer are used to obtain pedestrian movement data. Secondly, the improved peak detection method is used to obtain the average step frequency in a fixed time interval. The average step frequency, the time interval, acceleration and acceleration variance are used as features to be input to the trained deep RNN model for step length estimation. Finally, the estimated heading angle is added to predict the current position of the personnel. The experimental results show that the improved PDR algorithm for underground personnel positioning has a relative error of 5.9% in predicting the test set data and has a relative error of 1.6%-3.9% in positioning the actual test route. The relative error is smaller than the positioning error of the traditional PDR algorithm and the proposed PDR algorithm has improved the accuracy of underground personnel positioning effectively.
  • Related Articles

    [1]ZHANG Lian, JING Tingwei, ZHANG Lu, LI Mengtian, YANG Kai. Research on frequency stability of magnetic coupling wireless power transfer system[J]. Journal of Mine Automation, 2021, 47(3): 95-100. DOI: 10.13272/j.issn.1671-251x.2020080090
    [2]FENG Liu, HE Jialua. Research on four-coil structure of magnetically coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2019, 45(5): 73-78. DOI: 10.13272/j.issn.1671-251x.17385
    [3]WANG Yameng, WU Xinghua, LIN Lingyan, SONG Jiancheng. Magnetic coupling resonant wireless power transmission system based on variable coil structure[J]. Journal of Mine Automation, 2017, 43(9): 89-95. DOI: 10.13272/j.issn.1671-251x.2017.09.016
    [4]LAN Yongjun, GONG Lijiao, CAI Xinhong, LI Hongwei. Analysis of frequency characteristics of magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 67-70. DOI: 10.13272/j.issn.1671-251x.2016.05.015
    [5]FAN Yingjie, ZHANG Kairu, ZHANG Linlin, WANG Yi, DI Dongzhao. Study of asymmetrical magnetic coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2016, 42(5): 63-66. DOI: 10.13272/j.issn.1671-251x.2016.05.014
    [6]FAN Yingjie, ZHANG Kairu, DI Dongzhao, GU Huali, HAN Lu. Study of wireless power transmission system of small size resonator[J]. Journal of Mine Automation, 2016, 42(3): 48-51. DOI: 10.13272/j.issn.1671-251x.2016.03.011
    [7]ZHANG Guoyuan, WANG Xi, ZHAO Duan. Analysis of transmission characteristics of magnetically-coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(8): 85-88. DOI: 10.13272/j.issn.1671-251x.2015.08.021
    [8]GAO Shuang, CUI Langfu, CHENG Peng, GUO Xing, DENG Liming, SANG Shengbo. Detection system of resonance frequency for magnetostrictive material based on AD5933[J]. Journal of Mine Automation, 2015, 41(5): 18-22. DOI: 10.13272/j.issn.1671-251x.2015.05.005
    [9]XUE Hui, LIU Xiaowen, SUN Zhifeng, ZHANG Guoyuan. Research of load characteristics of wireless power transmission system based on magnetic coupling resonance[J]. Journal of Mine Automation, 2015, 41(3): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.03.017
    [10]ZHENG Li-na. Testing Frequency Characteristic of Analytical Circuit Based on EWB Software[J]. Journal of Mine Automation, 2001, 27(5): 35-36.
  • Cited by

    Periodical cited type(6)

    1. 陈书航,王世博,葛世荣,王赟,马广军. 综采工作面刮板输送机煤流时空分布研究. 工矿自动化. 2024(09): 98-107 . 本站查看
    2. 王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究. 煤矿机械. 2023(01): 14-17 .
    3. 周爱民,叶飞,施旭东,赵培成. 基于超声波传感器的带式输送机烟丝瞬时流量监测系统的设计. 现代信息科技. 2022(03): 149-152 .
    4. 唐文杰. 带式输送机运行状态智能监控体系的研究. 机械管理开发. 2022(09): 300-301+304 .
    5. 毛清华,毛金根,马宏伟,张旭辉,李铮. 矿用带式输送机智能监测系统研究. 工矿自动化. 2020(06): 48-52+58 . 本站查看
    6. 李瑶,王义涵. 带式输送机煤流量自适应检测方法. 工矿自动化. 2020(06): 98-102 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (99) PDF downloads (19) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return