ZHANG Yangyang, FAN Yuping, MA Xiaomin, et al. Prediction of overflow concentration of thickener based on ISSA-LSTM[J]. Journal of Mine Automation,2022,48(11):63-72. DOI: 10.13272/j.issn.1671-251x.2022060084
Citation: ZHANG Yangyang, FAN Yuping, MA Xiaomin, et al. Prediction of overflow concentration of thickener based on ISSA-LSTM[J]. Journal of Mine Automation,2022,48(11):63-72. DOI: 10.13272/j.issn.1671-251x.2022060084

Prediction of overflow concentration of thickener based on ISSA-LSTM

More Information
  • Received Date: June 21, 2022
  • Revised Date: October 28, 2022
  • Available Online: August 08, 2022
  • The monitoring of the overflow concentration of the thickener is the key to realize intelligent dosing of coal slurry. The overflow concentration monitoring method based on the sensor will lead to the delay of flocculant regulation. In order to solve the above problem, a prediction method of overflow concentration of thickener based on improved sparrow search algorithm (ISSA) and long-short term memory (LSTM) is proposed. Firstly, the correlation analysis and pretreatment of multi-parameter time series in the process of concentration production are carried out to obtain the input variables. Secondly, the multi-strategies are combined to improve sparrow search algorithm (SSA). Tent chaotic map is introduced to initialize the sparrow population to ensure population diversity and speed up algorithm convergence. The optimization process of SSA is improved by using the spiral predation strategy to balance both local development and global search capabilities. The firefly perturbation strategy is used to perturb the sparrow search results to improve the global search performance and avoid the algorithm falling into local optimization. Thirdly, ISSA is used to optimize the hyperparameters of the two-layer LSTM network model. Finally, the overflow concentration prediction model based on ISSA-LSTM is established for on-line monitoring. The experimental results show the following points. ① The Ackley function and Rastigin function are selected as test functions. It is concluded that ISSA's global optimization capability and convergence speed are better than those of the particle swarm optimization (PSO) algorithm, whale optimization algorithm (WOA) and standard SSA. ② Among the three improved strategies, the spiral predation strategy plays a leading role in improving the performance of ISSA. The chaotic map and the firefly perturbation strategy coordinate the convergence speed and global search capability of the algorithm to further improve the optimization performance of the algorithm. ③ ISSA is used to optimize the hyperparameters of LSTM, which solves the problem of under-fitting or over-fitting when the values are determined by subjective experience. The prediction precision of overflow concentration of the ISSA-LSTM model reaches 97.26%, which is higher than that of double-layer LSTM, SSA-LSTM, and least square support vector machine (LSSVM) models. ④ Data pretreatment can improve the precision of the model, and the prediction precision of overflow concentration after noise reduction is improved by 30.25% compared with that before noise reduction.
  • [1]
    冯甜欣,张晓光,刘景勇,等. 基于云平台的选煤厂环境监测系统[J]. 工矿自动化,2021,47(10):121-126.

    FENG Tianxin,ZHANG Xiaoguang,LIU Jingyong,et al. Environmental monitoring system of coal preparation plant based on cloud platform[J]. Industry and Mine Automation,2021,47(10):121-126.
    [2]
    董永胜,陈为高,侯佃平,等. 智能化选煤厂研究与建议[J]. 工矿自动化,2021,47(增刊1):26-31.

    DONG Yongsheng,CHEN Weigao,HOU Dianping,et al. Research and suggestions on intelligent coal preparation plant[J]. Industry and Mine Automation,2021,47(S1):26-31.
    [3]
    李朋,张明远,王保强. 分级破碎机智能化技术现状与发展方向[J]. 煤炭工程,2022,54(1):133-136.

    LI Peng,ZHANG Mingyuan,WANG Baoqiang. Status and development trends of intelligent technology of sizing crusher[J]. Coal Engineering,2022,54(1):133-136.
    [4]
    陈铭. 基于深度学习的浮选过程智能控制研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ming. Study on the intelligent control of flotation process based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2020.
    [5]
    赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [6]
    董丽丽,费城,张翔,等. 基于LSTM神经网络的煤矿突水预测[J]. 煤田地质与勘探,2019,47(2):137-143.

    DONG Lili,FEI Cheng,ZHANG Xiang,et al. Coal mine water inrush prediction based on LSTM neural network[J]. Coal Geology & Exploration,2019,47(2):137-143.
    [7]
    刘立邦,杨颂,王志坚,等. 基于改进WOA−LSTM的焦炭质量预测[J]. 化工学报,2022,73(3):1291-1299.

    LIU Libang,YANG Song,WANG Zhijian,et al. Prediction of coke quality based on improved WOA-LSTM[J]. CIESC Journal,2022,73(3):1291-1299.
    [8]
    宋刚,张云峰,包芳勋,等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报,2019,45(12):2533-2542. DOI: 10.13700/j.bh.1001-5965.2019.0388

    SONG Gang,ZHANG Yunfeng,BAO Fangxun,et al. Stock prediction model based on particle swarm optimization LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(12):2533-2542. DOI: 10.13700/j.bh.1001-5965.2019.0388
    [9]
    付华,赵俊程,付昱,等. 基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量[J]. 仪器仪表学报,2021,42(4):160-168. DOI: 10.19650/j.cnki.cjsi.J2107486

    FU Hua,ZHAO Juncheng,FU Yu,et al. Soft measurement of coal mine gas emission based on quantum-behaved particle swarm optimization and deep learning[J]. Chinese Journal of Scientific Instrument,2021,42(4):160-168. DOI: 10.19650/j.cnki.cjsi.J2107486
    [10]
    吴磊,康英伟. 基于改进粒子群优化长短时记忆神经网络的脱硫系统SO2预测模型[J]. 热力发电,2021,50(12):66-73.

    WU Lei,KANG Yingwei. Prediction model of SO2 concentration in desulfurization system based on improved particle swarm optimization LSTM[J]. Thermal Power Generation,2021,50(12):66-73.
    [11]
    LIU Guiyun,SHU Cong,LIANG Zhongwei,et al. A modified sparrow search algorithm with application in 3D route planning for UAV[J]. Sensors,2021,21(4):1224. DOI: 10.3390/s21041224
    [12]
    ZHU Yanlong,YOUSEFI N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm[J]. International Journal of Hydrogen Energy,2021,46(14):9541-9552. DOI: 10.1016/j.ijhydene.2020.12.107
    [13]
    贾澎涛,苗云风. 基于堆叠LSTM的多源矿压预测模型分析[J]. 矿业研究与开发,2021,41(8):79-82.

    JIA Pengtao,MIAO Yunfeng. Multi-source mine pressure prediction model analysis based on stacked-LSTM[J]. Mining Research and Development,2021,41(8):79-82.
    [14]
    XING Yin,YUE Jianping,CHEN Chuang,et al. Dynamic displacement forecasting of dashuitian landslide in China using variational mode decomposition and stack long short-term memory network[J]. Applied Sciences,2019,9(15):2951-2962. DOI: 10.3390/app9152951
    [15]
    XUE Jiankai,SHEN Bo. A novel swarm intelligence optimization approach:sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1):22-34.
    [16]
    吕鑫,慕晓冬,张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术,2021,43(2):318-327. DOI: 10.12305/j.issn.1001-506X.2021.02.05

    LYU Xin,MU Xiaodong,ZHANG Jun. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics,2021,43(2):318-327. DOI: 10.12305/j.issn.1001-506X.2021.02.05
    [17]
    吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725-734. DOI: 10.13247/j.cnki.jcumt.001316

    WU Xinzhong,HAN Zhenghua,WEI Lianjiang,et al. Intelligent on-demand adjustment algorithm and key technology of mine air flow[J]. Journal of China University of Mining & Technology,2021,50(4):725-734. DOI: 10.13247/j.cnki.jcumt.001316
    [18]
    滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报,2018,50(11):40-49. DOI: 10.11918/j.issn.0367-6234.201806096

    TENG Zhijun,LYU Jinling,GUO Liwen,et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology,2018,50(11):40-49. DOI: 10.11918/j.issn.0367-6234.201806096
    [19]
    DEMIDOVA L,GORCHAKOV A V. A study of chaotic maps producing symmetric distributions in the fish school search optimization algorithm with exponential step decay[J]. Symmetry,2020,12(5):784-801. DOI: 10.3390/sym12050784
    [20]
    MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. DOI: 10.1016/j.advengsoft.2016.01.008
    [21]
    孙林,黄金旭,徐久成,等. 基于自适应鲸鱼优化算法和容错邻域粗糙集的特征选择算法[J]. 模式识别与人工智能,2022,35(2):150-165. DOI: 10.16451/j.cnki.issn1003-6059.202202006

    SUN Lin,HUANG Jinxu,XU Jiucheng,et al. Feature selection based on adaptive whale optimization algorithm and fault-tolerance neighborhood rough sets[J]. Pattern Recognition and Artificial Intelligence,2022,35(2):150-165. DOI: 10.16451/j.cnki.issn1003-6059.202202006
    [22]
    柳长安,冯雪菱,孙长浩,等. 基于改进麻雀算法的最大2维熵分割方法[J]. 激光技术,2022,46(2):274-282. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.020

    LIU Chang'an,FENG Xueling,SUN Changhao,et al. Maximum two-dimensional entropy segmentation method based on improved sparrow algorithm[J]. Laser Technology,2022,46(2):274-282. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.020
    [23]
    曹通,白艳萍. 基于梯度下降优化的LSTM对空气质量预测研究[J]. 陕西科技大学学报,2020,38(6):159-164. DOI: 10.3969/j.issn.1000-5811.2020.06.026

    CAO Tong,BAI Yanping. Study on the prediction of air quality based on LSTM with gradient descent optimization[J]. Journal of Shaanxi University of Science & Technology,2020,38(6):159-164. DOI: 10.3969/j.issn.1000-5811.2020.06.026
  • Related Articles

    [1]WEI Zhao, YANG Dashan, LIANG Lin. Control strategy for mine emergency microgrid based on PLC communication[J]. Journal of Mine Automation, 2024, 50(S1): 194-199.
    [2]GUO Qianqian, CUI Lizhen, YANG Yong, HE Jiaxing, SHI Mingquan. PDR algorithm for precise positioning of underground personnel based on LSTM personalized step size estimation[J]. Journal of Mine Automation, 2022, 48(1): 33-39. DOI: 10.13272/j.issn.1671-251x.2021070052
    [3]ZHANG Xueying, LI Zhiyong, LI Fenglian, CHEN Guiju. A discrete firefly algorithm for solving the shortest escape path problem in-underground coal mine[J]. Journal of Mine Automation, 2016, 42(12): 30-35. DOI: 10.13272/j.issn.1671-251x.2016.12.007
    [4]HUANG You-rui, QU Li-guo, SHI Ming. A header compression technology of 6LoWPAN of Internet of Things based on cluster strategy[J]. Journal of Mine Automation, 2013, 39(2): 54-57.
    [5]HAO Xiao-hong, SUN Hong-yu, HAO Shou-qing. Research of Application of Fuzzy PID Control Strategy in DVR[J]. Journal of Mine Automation, 2010, 36(12): 36-40.
    [6]WANG Xian-bo, BU Wen-shao, DING Zhe, SHAN Dong-liang. Modeling and Simulation of Three-phase PWM Rectifier Based on Fixed Switching Frequency Control Strategy[J]. Journal of Mine Automation, 2010, 36(8): 68-72.
    [7]ZHAO Huan, WANG Hong-mei. Novel Modulation Strategy of Direct Power Control of PWM Rectifier Based on Virtual Flux[J]. Journal of Mine Automation, 2009, 35(11): 41-45.
    [8]LIU Qiao-ying, ZHU Jia-qun, MA Zheng-hua. Simulation Research of Fuzzy Self-adaptive PID Control Strategy for Brushless DC Motor[J]. Journal of Mine Automation, 2009, 35(8): 52-54.
    [9]XUE Ying-cheng~(, 2), YANG Xing-wu~. Research of a New Type of Control Strategy of Active Power Filter and Its EMTP Simulatio[J]. Journal of Mine Automation, 2009, 35(3): 21-24.
    [10]LI Lang-guang~(, 2), WANG Cong~. A New Type of UPS Circuit Structure with Dual-inverter and Its Control Strategy[J]. Journal of Mine Automation, 2008, 34(2): 35-38.
  • Cited by

    Periodical cited type(4)

    1. 王宇飞. 煤泥水智能加药系统的研究现状. 煤炭技术. 2025(04): 287-290 .
    2. 王汾青. 选煤场浓缩池溢流浓度控制方法研究. 工业仪表与自动化装置. 2024(01): 83-86+91 .
    3. 姜汉国,柴东元,戴恩哲,胡玉. 基于人工智能的大型光伏电站风险预控技术研究. 粘接. 2024(08): 146-149 .
    4. 李博,杨小权,乔少利. 选煤厂煤泥水系统智能压滤技术应用研究. 矿业安全与环保. 2024(06): 200-204 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (325) PDF downloads (45) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return