WANG Yuan, LI Hongwei, GUO Wei, HE Haitao, JIA Gaoxiang. Monitoring method of recovery state of hydraulic support guard plate based on image recognitio[J]. Journal of Mine Automation, 2019, 45(2): 47-53. DOI: 10.13272/j.issn.1671-251x.2018070037
Citation: WANG Yuan, LI Hongwei, GUO Wei, HE Haitao, JIA Gaoxiang. Monitoring method of recovery state of hydraulic support guard plate based on image recognitio[J]. Journal of Mine Automation, 2019, 45(2): 47-53. DOI: 10.13272/j.issn.1671-251x.2018070037

Monitoring method of recovery state of hydraulic support guard plate based on image recognitio

More Information
  • In view of problems of high failure rate and easy to be affected by incline of shearer in the application of contact-type monitoring method of hydraulic support in environment of mine fog and dust, a monitoring method of recovery stae of hydraulic support guard plate based on image recognition was proposed. The method uses fog dust image sharpening algorithm and machine vision measurement method to carry out monitoring of recovery angle of the guard plate of the hydraulic support, and determines the recovery state of the guard plate of the hydraulic support by measuring the angle of the guard plate. Firstly, an improved dark channel prior algorithm and a multi-scale Retinex algorithm with guided filtering are adopted to defog the captured image, and then wavelet fusion is carried out on the defogging image, focusing on restoring the edge details of the image of fog and dust. Then, the region of interest (ROI) of the fusion image is extracted, binarized and processed by horizontal and vertical projection with machine vision measurement method, the skeleton and skeleton pixel points are extracted and generated into straight lines by fitting, coordinate transformation is carried out by the calibrated CCD camera to output true angle of the guard plate, so as to judge whether the guard plate is recovered. The experimental results show that the method realizes sharpening process of images with fog and dust in underground coal mine, and keep the detail of the image, and has accurate measurement result, and the synthetic error is less than 2°, which meets monitoring requirements for the guard plate.
  • Related Articles

    [1]QIU Jinbo, LIU Cong, WU Haokun, ZHUANG Deyu, ZHU Shengqiang. Current status and key technology prospects of shearer intelligent development[J]. Journal of Mine Automation, 2024, 50(7): 64-78. DOI: 10.13272/j.issn.1671-251x.2024050039
    [2]HAN Zhe, XU Yuanqiang, ZHANG Desheng, ZHAO Quanwen, DU Ming, LI Hui, ZHOU Jie, ZHANG Shuai, LIU Jie, GAO Jianxun, WEN Cunbao, ZHOU Xiang, ZHAO Kai. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation, 2023, 49(4): 141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004
    [3]HAN Yu, WANG Lanhao, LIU Qinshan, GUI Xiahui. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation, 2023, 49(3): 100-106. DOI: 10.13272/j.issn.1671-251x.2022100019
    [4]ZHAO Yihui, ZHAO Youjun, ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Journal of Mine Automation, 2022, 48(2): 11-18,28. DOI: 10.13272/j.issn.1671-251x.2021090024
    [5]ZHANG Lingzhi, DAI Wei, MA Xiaoping. Advanced control of dense medium coal separation process: research progresses and prospects[J]. Journal of Mine Automation, 2020, 46(8): 21-27. DOI: 10.13272/j.issn.1671-251x.2020020001
    [6]QIU Jiakai, WANG Ranfeng, FU Xiang. Design of intelligent control system for dense medium suspension density with wide domai[J]. Journal of Mine Automation, 2019, 45(7): 33-37. DOI: 10.13272/j.issn.1671-251x.17429
    [7]GUO Nan, CHEN Zhen, LUO Xuhui. Research of automatic control technology of dense medium coal preparatio[J]. Journal of Mine Automation, 2014, 40(6): 34-36. DOI: 10.13272/j.issn.1671-251x.2014.06.009
    [8]ZHA Bing. Design of intelligent control system for vehicle cooling fa[J]. Journal of Mine Automation, 2013, 39(3): 98-100.
    [9]LEI Ru-hai, MA Yong, WANG Ju. Intelligent Control of Filter Pressing System for Float Coal[J]. Journal of Mine Automation, 2005, 31(5): 1-3.
    [10]XUE Wei-dong. Automatic Measure and COntrol System of Heavy Medium Technological Parameter for Cyclone in Coal Preparation Plant and Its Applicatio[J]. Journal of Mine Automation, 2001, 27(3): 34-35.
  • Cited by

    Periodical cited type(11)

    1. 宋柱. 智能感知与决策在智能化采煤系统中的关键技术探讨. 内蒙古煤炭经济. 2025(02): 17-19 .
    2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 .
    3. 朱磊,刘成勇,刘治成,古文哲,潘浩,宋天奇. 关中矿区煤矸井下分选及短壁充填设计与实践. 煤炭技术. 2024(04): 73-78 .
    4. 张肇龙,李冬,张治军,高建川,王然风. 山西焦煤集团选煤厂智能化建设的实践与思考. 中国煤炭. 2024(06): 98-104 .
    5. 陈修奇,白永清,姜思远,张忠,盖春杰,王传真. 龙王沟选煤厂智能化控制实践与分析. 洁净煤技术. 2024(S1): 553-559 .
    6. 刘军. 基于卷积神经网络前馈补偿的选煤厂燃煤炉重介质分选智能控制技术. 洁净煤技术. 2024(S1): 577-582 .
    7. 何明江,钟韦. 煤矿洗煤中智能重介软件系统的应用与优化. 内蒙古煤炭经济. 2024(19): 109-111 .
    8. 罗金洋,李勇,倪恒球,毕争,周宏强. 潘集选煤厂智能化建设促进“工位”替代“岗位”管理模式创新实践. 煤炭加工与综合利用. 2024(12): 73-79+83 .
    9. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 .
    10. 朱玉阁,黄飞云,张许峰,杨博. 选煤厂重介浅槽分选系统的智能化改造与实践. 内蒙古煤炭经济. 2023(14): 113-116 .
    11. 姜文磊. 基于粒子群算法的煤炭重介洗选智能控制系统. 自动化与仪器仪表. 2023(09): 161-164 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (153) PDF downloads (25) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return