ZHAO Yihui, ZHAO Youjun, ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Journal of Mine Automation, 2022, 48(2): 11-18,28. DOI: 10.13272/j.issn.1671-251x.2021090024
Citation: ZHAO Yihui, ZHAO Youjun, ZHOU Zhan. Research status of intelligent technology of shearer in fully mechanized working face[J]. Journal of Mine Automation, 2022, 48(2): 11-18,28. DOI: 10.13272/j.issn.1671-251x.2021090024

Research status of intelligent technology of shearer in fully mechanized working face

More Information
  • Received Date: September 06, 2021
  • Revised Date: February 10, 2022
  • Available Online: February 28, 2022
  • This paper introduces the research status of intelligent technology of shearer at home and abroad. Since the 1990s, the intelligent technology of shearers has entered a mature stage of development abroad, and leading innovations have been made in shearer memory cutting, coal and rock identification, airborne main control software and remote monitoring. The intelligent development of domestic shearers has shifted from introduction and absorption to independent innovation, basically realizing primary intelligent fully mechanized mining. According to the different functions of shearers, intelligent horizontal classification is divided into four categories, intelligent perception, intelligent control, intelligent diagnosis and intelligent communication. The key technologies of intelligent perception include posture perception, operating environment state perception, airborne video perception, personnel proximity identification, intelligent anti-collision detection, straightness perception and coal rock identification perception. The key technologies of intelligent control include drum automatic height adjustment control, adaptive speed adjustment control, environmental gas linkage control, coal flow load balance control, and pitch guidance control. The key technologies of intelligent diagnosis include real-time online diagnosis technology and the whole life cycle management of shearer. The key technologies of intelligent communication include wired communication technology and wireless communication technology. According to the human intervention in the coal cutting process of shearer, intelligent longitudinal gradation is divided into four grades, auxiliary automation, primary automation, advanced automation and intelligence. Through the intelligent classification and gradation of the shearer, the intelligent function of shearer can be visually consulted, and the intelligent grade of shearer can be determined by judging conditions, which provides quantitative reference for intelligent mine construction rating, and also shows the context of intelligent development of shearer more clearly.
  • [1]
    中国煤炭工业协会.2018煤炭行业发展年度报告[R].北京:中国煤炭工业协会,2019.

    China National Coal Association.2018 annual report on coal industry development[R].Beijing:China National Coal Association,2019.
    [2]
    国家能源局.关于促进煤炭工业科学发展的指导意见[N].中国煤炭报,2015-03-27(4).

    National Energy Administration.Guiding opinions on promoting the scientific development of the coal industry[N].China Coal News,2015-03-27(4).
    [3]
    国家发展改革委,国家能源局.能源技术革命创新行动计划(2016—2030年)[R/OL].[2021-08-02]. http://www.gov.cn/xinwen/2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.

    National Development and Reform Commission, National Energy Administration.Energy technology revolution innovation action plan (2016-2030)[R/OL].[2021-08-02]. http://www.gov.cn/xinwen/2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.
    [4]
    国家发展改革委,国家能源局.煤炭工业发展"十三五"规划[R/OL].[2021-08-02]. http://www.gov.cn/xinwen/2016-12/30/5154806/files/358a4e8cd1ff4e3b8d5245a6b9246167.pdf. National Development and Reform Commission,National Energy Administration.The 13th five-year plan for the development of the coal industry[R/OL].[2021-08-02]. http://www.gov.cn/xinwen/2016-12/30/5154806/files/358a4e8cd1ff4e3-b8d5245a6b9246167.pdf.
    [5]
    国家发展改革委,国家能源局,应急部,等.关于加快煤矿智能化发展的指导意见[N].中国煤炭报,2020-03-05(2).

    National Development and Reform Commission, National Energy Administration,Ministry of Emergency Management,et al.Guiding opinions on accelerating the intelligent development of coal mine[N].China Coal News,2020-03-05(2).
    [6]
    马宏伟.煤矿机电装备智能化[J].西安科技大学学报,2020,40(5):748.

    MA Hongwei.Intelligent coal mine electromechanical equipment[J].Journal of Xi'an University of Science and Technology,2020,40(5):748.
    [7]
    王国法,徐亚军,孟祥军,等.智能化采煤工作面分类、分级评价指标体系[J].煤炭学报,2020,45(9):3033-3044.

    WANG Guofa,XU Yajun,MENG Xiangjun,et al. Specification,classification and grading evaluation index for smart longwall mining face[J].Journal of China Coal Society,2020,45(9):3033-3044.
    [8]
    葛世荣,王忠宾,王世博.互联网+采煤机智能化关键技术研究[J].煤炭科学技术,2016,44(7):1-9.

    GE Shirong,WANG Zhongbin,WANG Shibo.Study on key technology of internet plus intelligent coal shearer[J].Coal Science and Technology,2016,44(7):1-9.
    [9]
    王国法.煤矿综采自动化成套技术与装备创新和发展[J].煤炭科学技术,2013,41(11):1-5.

    WANG Guofa.Innovation and development on automatic completed set technology and equipment of fully-mechanized coal mining face[J].Coal Science and Technology,2013,41(11):1-5.
    [10]
    Directorate-general for research and innovation. New mechanisation and automation of longwall and drivage equipment[R].Luxembourg:European Commission,2011.
    [11]
    唐恩贤.黄陵矿业公司智能化开采核心技术及其应用实践[J].中国煤炭,2019,45(4):13-18.

    TANG Enxian.Core technology of intelligent mining in Huangling Mining Company and its application practice[J].China Coal,2019,45(4):13-18.
    [12]
    刘振坚,邱锦波,庄德玉.天地科技上海分公司采煤机智能化技术现状与展望[J].中国煤炭,2019,45(7):33-39.

    LIU Zhenjian,QIU Jinbo,ZHUANG Deyu.Present situation and prospect of intelligent shearer technology of Shanghai Branch Company of Tiandi Co.,Ltd.[J].China Coal,2019,45(7):33-39.
    [13]
    索智文,赵亦辉,周展.超大采高采煤机智能诊断电气控制系统研究[J].煤炭工程,2020,52(6):15-19.

    SUO Zhiwen,ZHAO Yihui,ZHOU Zhan.Research on electrical control system of super high coal shearer[J].Coal Engineering,2020,52(6):15-19.
    [14]
    李森.基于惯性导航的工作面直线度测控与定位技术[J].煤炭科学技术,2019,47(8):169-174.

    LI Sen.Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J].Coal Science and Technology,2019,47(8):169-174.
    [15]
    苏秀平,李威,樊启高.采煤机滚筒调高滑模变结构控制策略[J].煤炭学报,2012,37(12):2107-2111.

    SU Xiuping,LI Wei,FAN Qigao.A shearer drum height adjusting strategy using sliding-mode variable structure control[J].Journal of China Coal Society,2012,37(12):2107-2111.
    [16]
    李文华,刘娇,柴博.薄煤层采煤机调高系统PID控制的研究与仿真[J].测控技术,2017,36(4):57-60.

    LI Wenhua,LIU Jiao,CHAI Bo.Research and simulation of height adjusting system with PID control for thin seam shearer[J].Measurement & Control Technology,2017,36(4):57-60.
    [17]
    王慧,赵国超,宋宇宁,等.采煤机调高过程的轨迹跟踪模糊PID控制[J].电子测量与仪器学报,2018,32(8):164-171.

    WANG Hui,ZHAO Guochao,SONG Yuning,et al. Trajectory tracking fuzzy PID control for height adjustment process of shearer[J].Journal of Electronic Measurement and Instrumentation,2018,32(8):164-171.
    [18]
    王忠宾,徐志鹏,董晓军.基于人工免疫和记忆切割的采煤机滚筒自适应调高[J].煤炭学报,2009,34(10):1405-1409.

    WANG Zhongbin,XU Zhipeng,DONG Xiaojun.Self-adaptive adjustment height of the drum in the shearer based on artificial immune and memory cutting[J].Journal of China Coal Society,2009,34(10):1405-1409.
    [19]
    刘东航.采煤机自动记忆截割控制系统的研究与设计[D].西安:西安科技大学,2018.

    LIU Donghang.Research and design of automatic memory cutting and cutting control system for shearer[D].Xi'an:Xi'an University of Science and Technology,2018.
    [20]
    袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.

    YUAN Liang.Scientific conception of precision coal mining[J].Journal of China Coal Society,2017,42(1):1-7.
    [21]
    程建远,朱梦博,王云宏,等.煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J].煤炭学报,2019,44(8):2285-2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al.Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J].Journal of China Coal Society,2019,44(8):2285-2295.
    [22]
    赵友军,赵亦辉,张旭辉.采煤机数字化技术发展及展望[J].重型机械,2018(4):29-34.

    ZHAO Youjun,ZHAO Yihui,ZHANG Xuhui.Development and prospect of digital technology on shearer[J].Heavy Machinery,2018(4):29-34.
    [23]
    樊红卫,张旭辉,曹现刚,等.智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J].振动与冲击,2020,39(24):194-204.

    FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al.Research status and prospect of fault diagnosis of China's coal mine machines under background of intelligent mine[J].Journal of Vibration and Shock,2020,39(24):194-204.
    [24]
    曹现刚,狄航,杜青青,等.采煤机全生命周期服务系统研究[J].工矿自动化,2018,44(6):40-45.

    CAO Xiangang,DI Hang,DU Qingqing,et al.Research on whole life cycle service system of shearer[J].Industry and Mine Automation,2018,44(6):40-45.
    [25]
    李首滨.煤炭工业互联网及其关键技术[J].煤炭科学技术,2020,48(7):98-108.

    LI Shoubin.Coal Industry Internet and its key technologies[J].Coal Science and Technology,2020,48(7):98-108.
    [26]
    范京道,闫振国,李川.基于5G技术的煤矿智能化开采关键技术探索[J].煤炭科学技术,2020,48(7):92-97.

    FAN Jingdao,YAN Zhenguo,LI Chuan.Exploration of intelligent coal mining key technology based on 5G technology[J].Coal Science and Technology,2020,48(7):92-97.
  • Related Articles

    [1]QIU Jinbo, LIU Cong, WU Haokun, ZHUANG Deyu, ZHU Shengqiang. Current status and key technology prospects of shearer intelligent development[J]. Journal of Mine Automation, 2024, 50(7): 64-78. DOI: 10.13272/j.issn.1671-251x.2024050039
    [2]FANG Xinqiu, FENG Haotian, LIANG Minfu, CHEN Ningning, WU Gang, SONG Yang. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation, 2023, 49(6): 78-87. DOI: 10.13272/j.issn.1671-251x.18107
    [3]HAN Zhe, XU Yuanqiang, ZHANG Desheng, ZHAO Quanwen, DU Ming, LI Hui, ZHOU Jie, ZHANG Shuai, LIU Jie, GAO Jianxun, WEN Cunbao, ZHOU Xiang, ZHAO Kai. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation, 2023, 49(4): 141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004
    [4]DAI Wei, WANG Yudong, DONG Liang, ZHAO Yuemin. Development and exploration of intelligent dense medium separation technology for coal[J]. Journal of Mine Automation, 2022, 48(11): 20-26, 44. DOI: 10.13272/j.issn.1671-251x.2022060106
    [5]GAO Qiang, WANG Jun, GAO Xiaoqiang, REN Wenqing. Remote intelligent control of continuous shearer[J]. Journal of Mine Automation, 2021, 47(S1): 51-54.
    [6]GAO Xicai, MA Tengfei, WANG Qi, LIU Shuai, ZHANG Xichen, FAN Kai, TANG Jianqiang, HU Bin. Intelligent fully mechanized mining support technology and equipment for thin-medium-thick coal seam[J]. Journal of Mine Automation, 2021, 47(11): 95-100. DOI: 10.13272/j.issn.1671-251x.2021080037
    [7]LI Xiaoqing, YU Miao, SHEN Zuying, CHEN Xuedong, ZENG Lizhan. Design of digital intelligent rope guider[J]. Journal of Mine Automation, 2014, 40(5): 81-84. DOI: 10.13272/j.issn.1671-251x.2014.05.020
    [8]ZHA Bing. Design of intelligent control system for vehicle cooling fa[J]. Journal of Mine Automation, 2013, 39(3): 98-100.
    [9]ZHANG Guo-Wei. Research of Fault Detection and Intelligent Diagnosis Technology of Heavy-loading Machinery in Copper-scandium Metal Mine[J]. Journal of Mine Automation, 2011, 37(8): 34-37.
    [10]LEI Ru-hai, MA Yong, WANG Ju. Intelligent Control of Filter Pressing System for Float Coal[J]. Journal of Mine Automation, 2005, 31(5): 1-3.
  • Cited by

    Periodical cited type(30)

    1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 .
    2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
    3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 .
    4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 .
    5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
    6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 .
    7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 .
    8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
    9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 .
    10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 .
    11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 .
    12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 .
    13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 .
    14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 .
    16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 .
    18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 .
    19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 .
    20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 .
    21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 .
    22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 .
    23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 .
    24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 .
    25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 .
    26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 .
    27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 .
    28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 .
    29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
    30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (1142) PDF downloads (235) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return