HAN Zhe, XU Yuanqiang, ZHANG Desheng, et al. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation,2023,49(4):141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004
Citation: HAN Zhe, XU Yuanqiang, ZHANG Desheng, et al. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation,2023,49(4):141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004

Non-repeated support advanced support intelligent control system

More Information
  • Received Date: September 01, 2022
  • Revised Date: March 27, 2023
  • Available Online: November 15, 2022
  • The non-repeated support advanced support equipment in environments with small space, large vibration, and severe electromagnetic interference has problems of low sensing technology level, imprecise motion control, and complex operation process. In order to solve the above problems, a non-repeated support advanced support intelligent control system is proposed. According to the controlled requirements of the non-repeated support advanced support technology, it has the capability to detect surrounding environmental information such as posture, obstacles, and positions. It has control methods of adaptive, self- adjusting, and self -decision-making. It has fast, stable, and precise execution components. It is pointed out that this intelligent control system proposes three key technologies: intelligent perception, logical control and execution. Based on the control functions and task flow of the intelligent control system for non-repeated support advanced support, the overall architecture of the system is proposed. The multi-sensor fusion technology based on attitude, obstacle recognition, pressure, position, and velocity information is proposed to control and execute multi working condition motion control strategies. The integrated prototype of "turn-transport-support" for advanced support in transportation roadways is developed. And ground tests are conducted. The test results show that the intelligent control system for non-repeated support advanced support can achieve visual recognition of the center point and obstacles of the support, automatic walking and stroke judgment of the support handling trolley, automatic offset and rotation of the support, and automatic grasping and lifting functions of the support. The visual recognition sensor can achieve support frame number coding recognition, support posture, and support area decision-making functions. The automated operation process of "walk-grasp-lower-turn-walk-turn-lift-loose-lower" is implemented. It can meet the application requirements.
  • [1]
    王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2]
    王国法,李前,赵志礼,等. 强矿压冲击工作面巷道冲击倾向性测试与超前支护系统研究[J]. 山东科技大学学报(自然科学版),2011,30(4):1-9.

    WANG Guofa,LI Qian,ZHAO Zhili,et al. The impact tendentiousness testing of working faces and roadways with strong rock burst and fore support system[J]. Journal of Shandong University of Science and Technology(Natural Science),2011,30(4):1-9.
    [3]
    康红普. 我国煤矿巷道围岩控制技术发展 70 年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [4]
    王国法,庞义辉. 液压支架与围岩耦合关系及应用[J]. 煤炭学报,2015,40(1):30-34.

    WANG Guofa,PANG Yihui. Relationship between hydraulic support and surrounding rock coupling and its application[J]. Journal of China Coal Society,2015,40(1):30-34.
    [5]
    王琦,王步康,郑毅. 回采巷道交替循环超前支护技术研究与应用[J]. 采矿与安全工程学报,2022,39(4):750-760.

    WANG Qi,WANG Bukang,ZHENG Yi. Research and application of alternate circulation advance support technology for mining entry[J]. Journal of Mining & Safety Engineering,2022,39(4):750-760.
    [6]
    徐亚军,张坤,李丁一,等. 超前支架自适应支护理论与应用[J]. 煤炭学报,2020,45(10):3615-3624.

    XU Yajun,ZHANG Kun,LI Dingyi,et al. Theory and application of self-adaptive support for advanced powered support[J]. Journal of China Coal Society,2020,45(10):3615-3624.
    [7]
    李明忠,张德生,刘壮,等. 8.2 m大采高综采工作面超前支护技术研究及应用[J]. 煤炭科学技术,2017,45(11):32-36.

    LI Mingzhong,ZHANG Desheng,LIU Zhuang,et al. Research and application of advance supporting technology for 8.2 m large mining height fully-mechanized face[J]. Coal Science and Technology,2017,45(11):32-36.
    [8]
    韩会军,余铜柱. 工作面巷道无反复支撑超前支护研究现状及发展[J]. 矿山机械,2020,48(7):1-4.

    HAN Huijun,YU Tongzhu. Research status and development of non-repeated advanced support on workface roadway[J]. Mining & Processing Equipment,2020,48(7):1-4.
    [9]
    刘新华. 采煤工作面沿空巷道无反复支撑超前支护技术[J]. 煤炭工程,2017,49(11):38-40,44.

    LIU Xinhua. Advance support technology of gob side entry without support in coal mining face[J]. Coal Engineering,2017,49(11):38-40,44.
    [10]
    张德生,牛艳奇,孟峰. 综采工作面超前支护技术现状及发展[J]. 矿山机械,2014,42(8):1-5.

    ZHANG Desheng,NIU Yanqi,MENG Feng. Status and development of advance supporting technology on fully mechanized faces[J]. Mining & Processing Equipment,2014,42(8):1-5.
    [11]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [12]
    闫殿华,周凯,王本林. 迈步分体式超前支护支架的研制与应用[J]. 煤炭科学技术,2014,42(5):81-83,87.

    YAN Dianhua,ZHOU Kai,WANG Benlin. Development and application of step-separation advanced support[J]. Coal Science and Technology,2014,42(5):81-83,87.
    [13]
    董华东,李男男. 8 m 大采高临空巷超前支架应用与研究[J]. 煤矿机械,2021,42(4):152-155.

    DONG Huadong,LI Nannan. Application and research on advance support of 8 m large mining height empty roadway[J]. Coal Mine Machinery,2021,42(4):152-155.
    [14]
    王莹. 综采工作面垛式超前液压支架设计与应用[J]. 煤矿机械,2021,42(3):160-163.

    WANG Ying. Design and application of stack advanced hydraulic support in fully mechanized working face[J]. Coal Mine Machinery,2021,42(3):160-163.
    [15]
    曹风魁,庄严,闫飞,等. 移动机器人长期自主环境适应研究进展和展望[J]. 自动化学报,2020,46(2):205-221.

    CAO Fengkui,ZHUANG Yan,YAN Fei,et al. Long-term autonomous environment adaptation of mobile robots:state-of-the-art methods and prospects[J]. Acta Automatica Sinica,2020,46(2):205-221.
    [16]
    王飞跃,魏庆来. 智能控制:从学习控制到平行控制[J]. 控制理论与应用,2018,35(7):939-948.

    WANG Feiyue,WEI Qinglai. Intelligent control:from learning control to parallel control[J]. Control Theory & Applications,2018,35(7):939-948.
    [17]
    刘金琨,尔联洁. 多智能体技术应用综述[J]. 控制与决策,2001(2):133-140,180.

    LIU Jinkun,ER Lianjie. Overview of application of multiagent technology[J]. Control and Decision,2001(2):133-140,180.
    [18]
    李少远,席裕庚,陈增强,等. 智能控制的新进展(Ⅱ)[J]. 控制与决策,2000(2):136-140.

    LI Shaoyuan,XI Yugeng,CHEN Zengqiang,et al. The new progresses in intelligent control(Ⅱ)[J]. Control and Decision,2000(2):136-140.
    [19]
    任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935.

    REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935.
    [20]
    秦方博,徐德. 机器人操作技能模型综述[J]. 自动化学报,2019,45(8):1401-1418.

    QIN Fangbo,XU De. Review of robot manipulation skill models[J]. Acta Automatica Sinica,2019,45(8):1401-1418.
    [21]
    任怀伟,杜毅博,侯刚. 综采工作面液压支架-围岩自适应支护控制方法[J]. 煤炭科学技术,2018,46(1):150-155,191.

    REN Huaiwei,DU Yibo,HOU Gang. Self adaptive support control method of hydraulic support-surrounding rock in fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):150-155,191.
    [22]
    杨国威,王以忠,王中任,等. 自主移动焊接机器人嵌入式视觉跟踪控制系统[J]. 计算机集成制造系统,2020,26(11):3049-3056.

    YANG Guowei,WANG Yizhong,WANG Zhongren,et al. Embedded vision tracking control system for autonomous mobile welding robot[J]. Computer Integrated Manufacturing Systems,2020,26(11):3049-3056.
    [23]
    李宏刚,王云鹏,廖亚萍,等. 无人驾驶矿用运输车辆感知及控制方法[J]. 北京航空航天大学学报,2019,45(11):2335-2344.

    LI Honggang,WANG Yunpeng,LIAO Yaping,et al. Perception and control method of driveless mining vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(11):2335-2344.
    [24]
    杨健健,王超,张强,等. 井工巷道环境建模与掘进障碍检测方法研究[J]. 煤炭科学技术,2020,48(11):12-18.

    YANG Jianjian,WANG Chao,ZHANG Qiang,et al. Research on environment modeling and excavation obstacle detection method of mine roadway[J]. Coal Science and Technology,2020,48(11):12-18.
  • Related Articles

    [1]LIU Wanchun, LI Yonghui. Wireless networked control systems: an overview and recent developments[J]. Journal of Mine Automation, 2025, 51(1): 1-10. DOI: 10.13272/j.issn.1671-251x.18229
    [2]CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation, 2024, 50(1): 115-121. DOI: 10.13272/j.issn.1671-251x.2023050057
    [3]SUN Tao, XIA Zhenxing, WANG Qianjin. Design of adaptive PID anti-saturation controller in switchover process of mine ventilator[J]. Journal of Mine Automation, 2019, 45(3): 90-94. DOI: 10.13272/j.issn.1671-251x.2018100013
    [4]CAO Xiaodong, YANG Shihai, JI Feng, YE Zongbin. Low loss control of explosion-proof frequency converter based on model predictive control[J]. Journal of Mine Automation, 2019, 45(2): 85-90. DOI: 10.13272/j.issn.1671-251x.2018100008
    [5]ZHANG Sihan, LIU Zhenjian, QIU Jinbo. Research on model predictive control model in application of shearer height-adjusting system[J]. Journal of Mine Automation, 2018, 44(5): 42-46. DOI: 10.13272/j.issn.1671-251x.2017120009
    [6]YU Jing, MO Xiuquan, XU Na. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Journal of Mine Automation, 2016, 42(10): 85-90. DOI: 10.13272/j.issn.1671-251x.2016.10.020
    [7]DONG Suling. Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J]. Journal of Mine Automation, 2015, 41(9): 39-43. DOI: 10.13272/j.issn.1671-251x.2015.09.011
    [8]DU Jingjing, HU Junchao, SHANGGUAN Xuanfeng. Multiple model predictive control of robot manipulator[J]. Journal of Mine Automation, 2014, 40(8): 57-62. DOI: 10.13272/j.issn.1671-251x.2014.08.015
    [9]MENG Lin-shan, MA Xiao-ping, LI Quan-bao. Improvement Scheme of Switchover Control System without Blowing-out of Mine Main Ventilator[J]. Journal of Mine Automation, 2012, 38(11): 9-10.
    [10]YU Li-min, MA Xiao-ping, REN Zhong-hua, YAN Shuan-zhu. Research of Switching Ventilator Control without Blowing-out of Main Ventilator of Mine and Its Implementatio[J]. Journal of Mine Automation, 2010, 36(9): 133-137.
  • Cited by

    Periodical cited type(16)

    1. 陈颖俊,霍瑜斌,施江峰,姚斌. 基于压电传感的水泵机组运行状态监测方法. 云南水力发电. 2025(01): 131-134 .
    2. 武晓莉. 矿用带式输送机运行状态监测系统应用. 机械管理开发. 2024(08): 249-251 .
    3. 梁堃,王驰. 基于分布式光纤声波传感器的带式输送机托辊故障监测方法. 激光与光电子学进展. 2023(09): 276-284 .
    4. 高波,袁媛,岳伟,张鑫增. 基于机器学习的托辊故障等级评价模型研究. 物流科技. 2023(13): 32-35 .
    5. 吴云雁. 矿用带式输送机故障监测与诊断系统设计. 陕西煤炭. 2023(04): 120-123+135 .
    6. 杨杰. 煤矿主运输长距离带式输送机托辊安装工艺研究. 煤矿机械. 2023(09): 101-105 .
    7. 邵斌,王磊,黄瀚. 煤矿井下带式输送机智能视频远程巡检系统设计. 煤矿机械. 2023(12): 198-200 .
    8. 李敬兆,孙杰臣,叶桐舟. 矿井带式输送机运行状态预测方法. 工矿自动化. 2022(02): 107-113 . 本站查看
    9. 宋超. 掘进巷道带式输送机常见故障及处理措施. 现代机械. 2022(01): 100-102 .
    10. 吴琦. 矿用皮带输送机托辊运行监测技术研究. 机械管理开发. 2022(01): 133-134+142 .
    11. 李超. 带式输送机自动巡检装置的设计及现场调试试验. 机械管理开发. 2022(04): 52-53+56 .
    12. 岳涛. 带式输送机托辊健康监测分析研究. 机械管理开发. 2022(07): 298-299+302 .
    13. 叶涛,王起,张弛. 带式输送机可视化监测系统研究与实现. 起重运输机械. 2022(19): 42-46 .
    14. 郝晓平. 带式输送机托辊故障检测技术研究. 机械管理开发. 2022(12): 121-122+125 .
    15. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    16. 吕超. 带式输送机自动调心托辊的优化设计探析. 机械管理开发. 2021(12): 66-67+70 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (196) PDF downloads (26) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return