WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498
Citation: WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498

An enhancement algorithm for low-illumination image of underground coal mine

More Information
  • The multi-scale Retinex algorithm has some problems such as insufficient detail enhancement and long time-consumption in processing low-illumination image of underground coal mine. Aiming at the problem, a fast multi-scale Retinex algorithm based on illumination correction was proposed to enhance low-illumination image of underground coal mine. By calculating brightness value of each pixel of image after gaussian blur, the image is divided into dark and highlight areas, and illumination correction is carried out on dark and highlight areas, so as to reduce brightness of highlight area to avoid overexposure, and improve brightness of dark area to highlight more details. Three-times fast mean filtering is used instead of Gaussian filtering to estimate illumination intensity, so as to reduce time-consumption of the algorithm. The experimental results show that the algorithm can effectively improve brightness and contrast of image, enhance details of dark and highlight areas in image, and has fast processing speed.
  • Related Articles

    [1]GAI Yonggang. A defogging algorithm for coal mine underground images based on dark channel guided filtering and lighting correction[J]. Journal of Mine Automation, 2024, 50(6): 89-95. DOI: 10.13272/j.issn.1671-251x.2024030048
    [2]MU Qi, GE Xiangfu, WANG Xinyue, LI Lei, LI Zhanli. A coal mine underground image enhancement method based on multi-scale gradient domain guided image filtering[J]. Journal of Mine Automation, 2024, 50(6): 79-88, 111. DOI: 10.13272/j.issn.1671-251x.2023080126
    [3]MIAO Zuohua, ZHAO Chengcheng, ZHU Liangjian, LIU Daiwen, CHEN Aoguang. Image enhancement algorithm for non-uniform illumination in underground mines[J]. Journal of Mine Automation, 2023, 49(11): 92-99. DOI: 10.13272/j.issn.1671-251x.2023060032
    [4]HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation, 2022, 48(8): 43-49. DOI: 10.13272/j.issn.1671-251x.2022020029
    [5]FAN Zhanwen, LIU Bo. Research on adaptive enhancement technology of low illumination image based on improved Retinex[J]. Journal of Mine Automation, 2021, 47(S1): 126-130.
    [6]TANG Shoufeng, SHI Ke, TONG Guangming, SHI Jingcan, LI Huashuo. A mine low illumination image enhancement algorithm[J]. Journal of Mine Automation, 2021, 47(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2021060052
    [7]LIU Xiaoyang, QIAO Tong, QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Journal of Mine Automation, 2017, 43(2): 49-54. DOI: 10.13272/j.issn.1671-251x.2017.02.011
    [8]LI Xinnia. Improved non-local means filtering algorithm for video monitoring image of coal mine[J]. Journal of Mine Automation, 2015, 41(6): 66-70. DOI: 10.13272/j.issn.1671-251x.2015.06.016
    [9]ZHANG Qia. A filtering method for infrared image based on improved pseudo median filtering and non-local means filtering[J]. Journal of Mine Automation, 2014, 40(12): 57-60. DOI: 10.13272/j.issn.1671-251x.2014.12.015
    [10]LIU Yi, JIA Xu-fen, TIAN Zi-jia. A processing method for underground image of uneven illumination based on homomorphic filtering theory[J]. Journal of Mine Automation, 2013, 39(1): 9-12.
  • Cited by

    Periodical cited type(14)

    1. 汪学明,刘峰. 基于RV1126的井下运输煤流感应传感器设计. 煤矿机电. 2025(01): 31-36 .
    2. 闫明伟. 煤矿井下巷道行驶车辆车前障碍物检测方法研究. 矿业安全与环保. 2024(01): 168-174 .
    3. 郭永辉. 煤矿井下图像增强算法研究. 矿山机械. 2024(06): 53-57 .
    4. 张延军,夏黎明. 基于改进加权引导滤波的煤矿井下图像除雾算法研究. 矿业研究与开发. 2023(05): 203-210 .
    5. 姚超修,蒋泽,胡亚磊. 基于改进EnlightenGAN的煤矿井下图像增强算法. 煤炭技术. 2023(09): 219-222 .
    6. 苏波,李超,王莉. 基于多权重融合策略的Retinex矿井图像增强算法. 煤炭学报. 2023(S2): 813-822 .
    7. 乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究. 煤炭技术. 2022(03): 193-195 .
    8. 陈晨,梁霄. 低照度下平面图像舒适色度范围测定方法. 吉林化工学院学报. 2022(05): 83-88 .
    9. 樊占文,刘波. 基于改进的Retinex低照度图像自适应增强技术研究. 工矿自动化. 2021(S1): 126-130 . 本站查看
    10. 王永杰. 基于FPGA的低照度环境下激光图像增强研究. 激光杂志. 2021(05): 68-72 .
    11. 杨帅,田益民,李璐瑶,郑美俊,高雪,宋方方. 局部相关的非线性采矿图像增强算法. 科技通报. 2021(10): 44-47 .
    12. 魏峰. 基于情景感知驱动的煤矿监察装备及平台设计. 煤炭工程. 2020(07): 157-160 .
    13. 蔡改贫,汪龙,罗小燕,姜志宏. 基于分块处理的矿石图像多阈值二值化算法. 矿业研究与开发. 2020(12): 153-157 .
    14. 范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法. 煤炭学报. 2020(12): 4248-4260 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (182) PDF downloads (26) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return