Citation: | MIAO Zuohua, ZHAO Chengcheng, ZHU Liangjian, et al. Image enhancement algorithm for non-uniform illumination in underground mines[J]. Journal of Mine Automation,2023,49(11):92-99. doi: 10.13272/j.issn.1671-251x.2023060032 |
[1] |
吴建雷. 矿井下图像增强与目标跟踪研究[D]. 太原:太原理工大学,2021.
WU Jianlei. Research on image enhancement and target tracking in underground mine[D]. Taiyuan:Taiyuan University of Technology,2021.
|
[2] |
刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011
LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54. doi: 10.13272/j.issn.1671-251x.2017.02.011
|
[3] |
唐守锋,史可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052
TANG Shoufeng,SHI Ke,TONG Guangming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32-36. doi: 10.13272/j.issn.1671-251x.2021060052
|
[4] |
阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030
RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186-192. doi: 10.13827/j.cnki.kyyk.2021.11.030
|
[5] |
许新宇. 光照不均图像的超分辨率重建与空间融合增强算法研究[D]. 西安:西安科技大学,2020.
XU Xinyu. Research on super-resolution reconstruction and spatial fusion enhancement algorithm of uneven light image[D]. Xi'an:Xi'an University of Science and Technology,2020.
|
[6] |
乔佳伟,贾运红. Retinex算法在煤矿井下图像增强的应用研究[J]. 煤炭技术,2022,41(3):193-195.
QIAO Jiawei,JIA Yunhong. Research on application of Retinex algorithm in image enhancement in coal mine[J]. Coal Technology,2022,41(3):193-195.
|
[7] |
李星. 低照度彩色图像CLAHE增强算法研究[D]. 哈尔滨:哈尔滨理工大学,2021.
LI Xing. Research on CLAHE enhancement algorithm for low illuminance color image[D]. Harbin:Harbin University of Science and Technology,2021.
|
[8] |
SAAD N H,ISA N A M,SALEH H M. Nonlinear exposure intensity based modification histogram equalization for non-uniform illumination image enhancement[J]. IEEE Access,2021,9:93033-93061. doi: 10.1109/ACCESS.2021.3092643
|
[9] |
THEPADE S D,PARDHI P M. Contrast enhancement with brightness preservation of low light images using a blending of CLAHE and BPDHE histogram equalization methods[J]. International Journal of Information Technology,2022,14(6):3047-3056. doi: 10.1007/s41870-022-01054-0
|
[10] |
管萍. 基于Retinex和卷积神经网络的低照度图像增强方法研究[D]. 芜湖:安徽工程大学,2022.
GUAN Ping. Research on low illumination image enhancement method based on Retinex and convolutional neural network[D]. Wuhu:Anhui Polytechnic University,2022.
|
[11] |
吴佳丽. 基于Retinex理论的非均匀光照图像增强算法研究[D]. 南京:南京邮电大学,2022.
WU Jiali. Research on image enhancement algorithms under non-uniform illumination conditions based on Retinex theory[D]. Nanjing:Nanjing University of Posts and Telecommunications,2022.
|
[12] |
赵征鹏,李俊钢,普园媛. 基于卷积神经网络的Retinex低照度图像增强[J]. 计算机科学,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092
ZHAO Zhengpeng,LI Jungang,PU Yuanyuan. Low-light image enhancement based on retinex theory by convolutional neural network[J]. Computer Science,2022,49(6):199-209. doi: 10.11896/jsjkx.210400092
|
[13] |
武亚红. 不均匀低照度低质图像增强算法研究[D]. 南京:南京邮电大学,2021.
WU Yahong. Study of algorithms for non-uniform low-light low-quality image enhancement[D]. Nanjing:Nanjing University of Posts and Telecommunications,2021.
|
[14] |
姜雪松. 不良照明条件下的夜晚图像增强方法研究[D]. 哈尔滨:哈尔滨工业大学,2020.
JIANG Xuesong. Research on nighttime image under poor lighting conditions enhancement methods[D]. Harbin:Harbin Institute of Technology,2020.
|
[15] |
WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep Retinex decomposition for low-light enhancement[J]. 2018. DOI: 10.48550/arXiv.1808.04560.
|
[16] |
WU Zifeng,SHEN Chunhua,ANTON V D H. Wider or deeper:revisiting the resnet model for visual recognition[J]. Pattern Recognition:The Journal of the Pattern Recognition Society,2019,90:119-133. doi: 10.1016/j.patcog.2019.01.006
|
[17] |
WOO H,PARK J,LEE J,et al. CBAM:convolutional block attention module[C]. European Conference on Computer Vision,Munich,2018:3-19.
|
[18] |
LYU Feifan,LU Feng,WU Jianhua,et al. MBLLEN:low-light image/video enhancement using CNNs[C]. British Machine Vision Conference,Newcastle,2018,220(1):4.
|
[19] |
LIU Risheng,MA Long,ZHANG Jia'ao,et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Kuala Lumpur,2021:10561-10570.
|
[20] |
GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1780-1789.
|
[21] |
LI Chongyi,GUO Chunle,LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(8):4225-4238.
|
[22] |
ZHANG Yonghua,GUO Xiaojie,MA Jiayi,et al. Beyond brightening low-light images[J]. International Journal of Computer Vision,2021,129:1013-1037. doi: 10.1007/s11263-020-01407-x
|
[23] |
MITTAL A,SOUNDARARAJAN R,BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters,2012,20(3):209-212.
|
[24] |
SETIADI D R I M. PSNR vs SSIM:imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications,2021,80(6):8423-8444. doi: 10.1007/s11042-020-10035-z
|