LI Huan, JIA Jia, YANG Xiuyu, SONG Chunru. Gas concentration prediction model for fully mechanized coal mining face[J]. Journal of Mine Automation, 2018, 44(12): 48-53. DOI: 10.13272/j.issn.1671-251x.17364
Citation: LI Huan, JIA Jia, YANG Xiuyu, SONG Chunru. Gas concentration prediction model for fully mechanized coal mining face[J]. Journal of Mine Automation, 2018, 44(12): 48-53. DOI: 10.13272/j.issn.1671-251x.17364

Gas concentration prediction model for fully mechanized coal mining face

More Information
  • In view of problems of gas concentration prediction method based on least squares support vector machine (LS-SVM) such as easy to fall into local optimal solution, low search efficiency and easy to occur premature convergence during parameter optimization process, a gas concentration prediction model based on ACO-LS-SVM was proposed. Firstly, k-means clustering analysis is performed on collected large amount of gas data on fully mechanized coal mining face to reduce dimension. Then, improved ant colony algorithm is used to optimize penalty parameters and kernel function parameters of LS-SVM, and the optimized parameters are substituted into the LS-SVM model for regression prediction. The simulation results show that when absolute error threshold of gas concentration is 0.03%, 0.04%, 0.05%, the prediction accuracy of the gas concentration prediction model based on ACO-LS-SVM is about 95%, which is better than SVM model and LS-SVM model.
  • Related Articles

    [1]ZHAI Xiaowei, WANG Chen, HAO Le, LI Xintian, HOU Qinyuan, MA Teng. Study on the temperature prediction model of residual coal in goaf based on ACO-KELM[J]. Journal of Mine Automation, 2024, 50(12): 128-135. DOI: 10.13272/j.issn.1671-251x.18226
    [2]FAN Jingdao, HUANG Yuxin, YAN Zhenguo, LI Chuan, WANG Chunlin, HE Yanpeng. Research on gas concentration prediction driven by ARIMA-SVM combined model[J]. Journal of Mine Automation, 2022, 48(9): 134-139. DOI: 10.13272/j.issn.1671-251x.2022030024
    [3]QIU Xingguo, LI Jing. Prediction model of water inrush in coal mine based on IWOA-SVM[J]. Journal of Mine Automation, 2022, 48(1): 71-77. DOI: 10.13272/j.issn.1671-251x.2021050043
    [4]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [5]MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
    [6]WANG Anyi, XI Xi. Forecasting of underground field intensity based on LS-SVM optimized by genetic algorithm[J]. Journal of Mine Automation, 2016, 42(12): 46-50. DOI: 10.13272/j.issn.1671-251x.2016.12.010
    [7]WANG Anyi, GUO Shiku. Prediction of field intensity in mine tunnel based on LS-SVM[J]. Journal of Mine Automation, 2014, 40(10): 36-40. DOI: 10.13272/j.issn.1671-251x.2014.10.011
    [8]PAN Lei, LI Li-juan, DING Ting-ting, LIU Dui. Forecasting of Short-term Power Load Based on Improved PSO Algorithm and LS-SVM[J]. Journal of Mine Automation, 2012, 38(9): 55-59.
    [9]HE Wu-ming~, WANG Pei-liang~, SHEN Wan-chang~. Fault Diagnosis of Elevator Brake Based on LS-SVM[J]. Journal of Mine Automation, 2010, 36(2): 44-48.
    [10]LI Da-feng, ZHAO Shuai, WU Feng. Research of Prediction of Coal and Gas Outburst Based on ICA-SVM[J]. Journal of Mine Automation, 2009, 35(10): 36-38.
  • Cited by

    Periodical cited type(12)

    1. 兰永青,乔元栋,程虹铭,雷利兴,罗化峰. 基于SSA-LSTM的瓦斯浓度预测模型. 工矿自动化. 2024(02): 90-97 . 本站查看
    2. 胡青松,郑硕,李世银,孙彦景. 基于改进TCN-TimeGAN的矿井瓦斯浓度智能预测方法. 煤炭科学技术. 2024(S2): 321-330 .
    3. 张沛泓,李殿维,张喜乐. 基于变分模态分解的瓦斯浓度多尺度组合预测. 辽宁工程技术大学学报(自然科学版). 2023(01): 18-24 .
    4. 王秋冬,雷美荣,张艳军,赵嘉兴. 井下皮带防灭火机器人的设计. 工业仪表与自动化装置. 2023(05): 60-63 .
    5. 朱海军,李晨,刘彬. 矿用不间断电源风机变频器DC/DC设计与研究. 煤矿机械. 2022(10): 6-9 .
    6. 梁运培,栗小雨,李全贵,毛树人,郑梦浩,李建波. 基于CS-LSTM的工作面瓦斯浓度智能预测研究. 矿业安全与环保. 2022(04): 80-86 .
    7. 范京道,黄玉鑫,闫振国,李川,王春林,贺雁鹏. ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究. 工矿自动化. 2022(09): 134-139 . 本站查看
    8. 付华,刘雨竹,徐楠,张俊男. 基于多传感器-深度长短时记忆网络融合的瓦斯浓度预测研究. 传感技术学报. 2021(06): 784-790 .
    9. 袁静泊,琚云鹏,杨龙月,吕承阳. 井下局部通风机储能型变流器控制策略研究. 工矿自动化. 2020(02): 65-72+93 . 本站查看
    10. 卫颖婕. 基于ZFM4/48型区域自动喷粉灭火装置的煤矿抑爆系统设计. 机械管理开发. 2020(10): 247-248+272 .
    11. 常亮,张恒,杨雪欣. 一种GRU的瓦斯浓度预测改进模型. 黑龙江科技大学学报. 2020(05): 532-535+550 .
    12. 王鹏,伍永平,王栓林,宋超,吴学明. 矿井瓦斯浓度Lagrange-ARIMA实时预测模型研究. 煤炭科学技术. 2019(04): 141-146 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (80) PDF downloads (18) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return