MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
Citation: MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085

Bearing residual life prediction based on principal component feature fusion and SVM

More Information
  • In order to solve the problem that using single feature quantity for bearing residual life prediction had large error and it was difficult to estimate bearing residual life under the condition of limited data samples, a bearing residual life prediction method based on principal component feature fusion and support vector machine(SVM) was proposed. This method collects data samples of vibration acceleration signals and extracts the characteristic indexes such as RMS, peak value and wavelet entropy to characterize the degradation trend of bearings. The principal component analysis is used to fuse multiple feature indexs to eliminate the redundancy and correlation between features, and construct regressive feature quantities with relative multi-feature; the regressive feature quantities are input into SVM model for bearing residual life prediction. The field engineering application results show that the bearing residual life prediction method based on principal component feature fusion and SVM can screen out the principal components which contain most of the information under small sample condition, thus reducing the calculation amount while ensuring the prediction accuracy.
  • Related Articles

    [1]SUN Yongxin. Research on bearing residual life prediction method of coal mine machinery equipment[J]. Journal of Mine Automation, 2021, 47(11): 126-130. DOI: 10.13272/j.issn.1671-251x.17834
    [2]QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, ZHANG Zhaozhao, ZHANG Jing. Discrimination of mine inrush water source based on PCA -CRHJ model[J]. Journal of Mine Automation, 2020, 46(11): 65-71. DOI: 10.13272/j.issn.1671 -251x.2020040089
    [3]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [4]ZHANG Linfeng, TIAN Muqin, SONG Jiancheng, HE Ying, FENG Junling, YANG Xiang. Feature extraction of vibration signal of roadheader based on singular value decompositio[J]. Journal of Mine Automation, 2019, 45(1): 28-34. DOI: 10.13272/j.issn.1671-251x.2018070035
    [5]MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue[J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
    [6]WU Yunxia, ZHANG Haopeng, DU Dongbi. Feature extraction method for human ear image and its application in miner identificatio[J]. Journal of Mine Automation, 2015, 41(11): 30-34. DOI: 10.13272/j.issn.1671-251x.2015.11.008
    [7]WANG Jinfeng, QIN Ying, ZHAI Xueqi, FENG Lijie. Safety evaluation model of coal mine based on principal component and cluster analysis[J]. Journal of Mine Automation, 2015, 41(6): 29-34. DOI: 10.13272/j.issn.1671-251x.2015.06.008
    [8]WANG Yang. Statistics of coal mine safety accidents cause based on principal component analysis[J]. Journal of Mine Automation, 2013, 39(5): 90-92.
    [9]ZHANG Ning, REN Mao-wen, LIU Ping. Identification of coal-rock interface based on principal component analysis and BP neural network[J]. Journal of Mine Automation, 2013, 39(4): 55-58.
    [10]LEI Meng~, LI Ming~, XU Zhi-bin~. Application of Genetic Neural Network in Coal Quality Analysis with Near-infrared Spectroscopy[J]. Journal of Mine Automation, 2010, 36(2): 41-44.
  • Cited by

    Periodical cited type(1)

    1. 杨宁. 不连沟煤矿F6225工作面电阻率监测实践研究. 能源与环保. 2024(10): 119-123+134 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (98) PDF downloads (13) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return