LI Xiaoliang, YAN Li, LIU Zhentang, LIU Haoxiong, QIAN Jifa, . Analysis of combustion duration and residual gas in secondary explosion of coal dust[J]. Journal of Mine Automation, 2018, 44(11): 62-68. DOI: 10.13272/j.issn.1671—251x.2018040085
Citation: LI Xiaoliang, YAN Li, LIU Zhentang, LIU Haoxiong, QIAN Jifa, . Analysis of combustion duration and residual gas in secondary explosion of coal dust[J]. Journal of Mine Automation, 2018, 44(11): 62-68. DOI: 10.13272/j.issn.1671—251x.2018040085

Analysis of combustion duration and residual gas in secondary explosion of coal dust

More Information
  • Secondary explosion experiments of coal dust were carried out by use of 20 L spherical explosion device under the conditions of different coal dust concentration, particle size and ignition energy separately, and influence of coal dust concentration, particle size and ignition energy on combustion duration and residual gas was analyzed. The results show that under the same conditions, the secondary explosion combustion duration(T2) of coal dust is greater than the first explosion combustion duration(T1). Ignition energy has the greatest influence on T2, and coal dust particle size has the least influence. With increase of coal dust concentration, T2 first decreases and then increases. With decrease of coal dust particle size or increase of ignition energy, T2 decreases continually. For the same kind of gas under the same conditions, volume fraction of residual gas after the secondary explosion of coal dust is smaller than that after the first explosion. In a certain range, with decreases of coal dust particle size, volume fraction of residual CO continuously decreases after the secondary explosion, ratio of volume fraction of CO to the one of CO2 decreases, and volume fraction of CH4 increases. With increase of ignition energy, volume fraction of residual CO or CH4 after the secondary explosion continuously increases, and ratio of volume fraction of CO to the one of CO2 shows an increasing trend.
  • Related Articles

    [1]YAO Zhuo, WANG Wei, WEI Wenshu, LU Delai, LI Xiangbo. Analysis of dynamic and static features of intrinsically safe electromagnetic valves and optimization of influencing parameters[J]. Journal of Mine Automation, 2024, 50(6): 150-158. DOI: 10.13272/j.issn.1671-251x.2024020048
    [2]WANG Weibing, HOU Xueqian, ZHAO Shuanfeng, HE Haitao, XING Zhizhong, LU Zhengxiong. A method for completing coal wall point cloud in fully mechanized working face based on residual optimization[J]. Journal of Mine Automation, 2024, 50(6): 120-128. DOI: 10.13272/j.issn.1671-251x.2024020014
    [3]ZHANG Jie, MIAO Xiaoran, ZHAO Zuopeng, HU Jianfeng, MIN Bingbing, GAO Yumeng. Local feature-guided label smoothing and optimization for re-identification of underground personnel with weak features[J]. Journal of Mine Automation, 2024, 50(2): 83-89. DOI: 10.13272/j.issn.1671-251x.2023080092
    [4]ZHU Daixian, QIU Qiang, KONG Haoran, HU Qisheng, LIU Shulin. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation, 2024, 50(2): 72-82. DOI: 10.13272/j.issn.1671-251x.2023090045
    [5]CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction[J]. Journal of Mine Automation, 2023, 49(12): 114-120. DOI: 10.13272/j.issn.1671-251x.2023050029
    [6]WU Chuanlong, CHEN Wei, LIU Xiaowen, SHI Xinguo, LIU Ke, REN Xiaohong. Feature fusion based fault diagnosis of hoist inverter[J]. Journal of Mine Automation, 2021, 47(5): 46-51. DOI: 10.13272/j.issn.1671-251x.17772
    [7]ZHANG Meng, MIAO Changyun, MENG Deju. Research on a bearing early fault features extraction method[J]. Journal of Mine Automation, 2020, 46(4): 85-90. DOI: 10.13272/j.issn.1671-251x.2019090020
    [8]MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue[J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
    [9]SUN Jiping, YANG Kun. A coal-rock image feature extraction and recognition method[J]. Journal of Mine Automation, 2017, 43(5): 1-5. DOI: 10.13272/j.issn.1671-251x.2017.05.001
    [10]ZHANG Hanwen, LIU Jian, ZHANG Miaotian, MENG Guoying. A method of feature selection based on projectio[J]. Journal of Mine Automation, 2014, 40(1): 63-67. DOI: 10.13272/j.issn.1671-251x.2014.01.017
  • Cited by

    Periodical cited type(10)

    1. 李鹏,程晨,臧润泽. 基于UM-HE的火力发电厂继电器室巡检机器人视觉图像增强研究. 电力设备管理. 2025(01): 177-179 .
    2. 白宇宸,苗作华,徐厚友,王梦婷. 基于光照约束的煤矿井下低光照图像增强算法. 煤矿安全. 2025(03): 207-214 .
    3. 张旭辉,麻兵,杨文娟,董征,李语阳. 煤矿井下非均匀照度图像去噪研究. 工矿自动化. 2024(02): 1-8 . 本站查看
    4. 段一凡,刘然,刘小杰,李欣,袁雪涛,吕庆. 图像识别技术在高炉风口识别与监测中的应用前景探索. 钢铁. 2024(05): 56-70 .
    5. 郭永辉. 煤矿井下图像增强算法研究. 矿山机械. 2024(06): 53-57 .
    6. 程子豪,裴玉瑶,周义祥,张文东,王常青,周璇,王艳玲,吴茜. 基于强度和图像梯度的瞳孔中心定位. 贵州大学学报(自然科学版). 2024(04): 64-69 .
    7. 马骞. 基于多模态特征的重载铁路钢轨损伤检测方法. 无损检测. 2024(09): 69-74 .
    8. 李谦一,张宏宇,房媛. 基于改进RRD-Net的低照度图像增强网络. 照明工程学报. 2024(05): 61-67 .
    9. 谷亚楠,李晴,刘晨晨,张富凯. 基于增强网格网络的井下尘雾图像清晰化算法. 工矿自动化. 2024(10): 120-127+159 . 本站查看
    10. 王智军. 基于透射率约束的降质图像视觉效果增强处理方法. 传感器世界. 2024(12): 27-32 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (88) PDF downloads (10) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return