Volume 50 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
ZHU Daixian, QIU Qiang, KONG Haoran, et al. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation,2024,50(2):72-82.  doi: 10.13272/j.issn.1671-251x.2023090045
Citation: ZHU Daixian, QIU Qiang, KONG Haoran, et al. A line feature matching algorithm for mine images based on line segment detection and LT descriptors[J]. Journal of Mine Automation,2024,50(2):72-82.  doi: 10.13272/j.issn.1671-251x.2023090045

A line feature matching algorithm for mine images based on line segment detection and LT descriptors

doi: 10.13272/j.issn.1671-251x.2023090045
  • Received Date: 2023-09-14
  • Rev Recd Date: 2024-02-21
  • Available Online: 2024-03-04
  • Image matching is an extremely important part of simultaneous localization and mapping (SLAM) technology. It is used to determine camera position and posture based on the transformation relationship between images. The image matching method based on line features has strong robustness and noise resistance, making it more suitable for underground image matching. The line descriptors based on deep learning have high robustness to scenes such as line segment occlusion, and their performance is better than traditional descriptors. However, the descriptors of convolutional neural network architecture abstract variable length line segments into fixed dimensions for description, which is not conducive to matching images with large changes in line segment length and parallax. In order to solve the above problems, a line feature matching algorithm for mine images based on line segment detection and line transformers (LT) is proposed. The algorithm uses single parameter homomorphic filtering in the frequency domain to reduce the lighting component of the image, enhance the reflection component, and improve brightness and contrast. The algorithm uses contrast limited adaptive histogram equalization (CLAHE) algorithm in YUV space to balance brightness components and make brightness distribution more even. The algorithm transforms to RGB space to extract line segment detection (LSD) lines. A LT descriptor based on Transformer architecture is introduced to construct the feature vector of LSD lines, and finally complete line feature matching. The experimental results show that the algorithm combines the advantages of homomorphic filtering and CLAHE algorithm. After image enhancement, the brightness of the image is moderate, the contrast is good, the grayscale distribution is even. The enhancement effect is better than the single parameter homomorphic filtering algorithm and EnlightenGAN algorithm. The number of line features extracted by this algorithm has increased by an average of 32.92% compared to the original image. It has good robustness in matching underground images with different proportions of similar textures, varying degrees of rotation and translation changes. The average correct matching number is 61.75 pairs, with an average precision of 86.83%. It is superior to the line binary descriptor (LBD) algorithm, LBD_NNDR algorithm, and LT algorithm. It can meet the requirements of robust matching of mine images.

     

  • loading
  • [1]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China' s coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology,2021,49(9):1-8.
    [2]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [3]
    苗升,刘小雄,黄剑雄,等. 无人机视觉SLAM环境感知发展研究[J]. 计算机测量与控制,2021,29(8):1-6,41.

    MIAO Sheng,LIU Xiaoxiong,HUANG Jianxiong,et al. Research on development of UAV visual SLAM environment perception[J]. Computer Measurement & Control,2021,29(8):1-6,41.
    [4]
    孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69,85.

    KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69,85.
    [5]
    赵良玉,金瑞,朱叶青,等. 基于点线特征融合的双目惯性SLAM算法[J]. 航空学报,2022,43(3):363-377.

    ZHAO Liangyu,JIN Rui,ZHU Yeqing,et al. Stereo visual-inertial SLAM algorithm based on merge of point and line features[J]. Acta Aeronautica et Astronautica Sinica,2022,43(3):363-377.
    [6]
    ZHU Daixian,JI Kangkang,WU Dong,et al. A coupled visual and inertial measurement units method for locating and mapping in coal mine tunnel[J]. Sensors,2022,22(19). DOI: 10.3390/s22197437.
    [7]
    谢晓佳. 基于点线综合特征的双目视觉SLAM方法[D]. 杭州:浙江大学,2017.

    XIE Xiaojia. Stereo visual SLAM using point and line features[D]. Hangzhou:Zhejiang University,2017.
    [8]
    WANG Wei,GAO Wei,CUI Hainan,et al. Reconstruction of lines and planes of urban buildings with angle regularization[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,165:54-66. doi: 10.1016/j.isprsjprs.2020.04.013
    [9]
    宋佳璇,范大昭,董杨,等. 神经网络学习与灰度信息结合的跨视角影像线特征匹配算法[J]. 测绘学报,2023,52(6):990-999. doi: 10.11947/j.AGCS.2023.20220468

    SONG Jiaxuan,FAN Dazhao,DONG Yang,et al. Line matching algorithm for cross-view images combining neural network learning with grayscale information[J]. Acta Geodaetica et Cartographica Sinica,2023,52(6):990-999. doi: 10.11947/j.AGCS.2023.20220468
    [10]
    CHEN Min,YAN Shaohua,QIN Rongjun,et al. Hierarchical line segment matching for wide-baseline images via exploiting viewpoint robust local structure and geometric constraints[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,181:48-66. doi: 10.1016/j.isprsjprs.2021.09.002
    [11]
    CHEN Min,LI Wen,FANG Tong,et al. An adaptive feature region-based line segment matching method for viewpoint-changed images with discontinuous parallax and poor textures[J]. International Journal of Applied Earth Observation and Geoinformation,2023,117. DOI: 10.1016/j.jag.2023.103209.
    [12]
    LANGE M,SCHWEINFURTH F,SCHILLING A. DLD:a deep learning based line descriptor for line feature matching[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Macau,2019:5910-5915.
    [13]
    王竞雪,刘肃艳,王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报,2020,49(6):746-756.

    WANG Jingxue,LIU Suyan,WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy[J]. Acta Geodaetica et Cartographica Sinica,2020,49(6):746-756.
    [14]
    LI Gang,ZENG Yawen,HUANG Huilan,et al. A multi-feature fusion slam system attaching semantic invariant to points and lines[J]. Sensors,2021,21(4). DOI: 10.3390/s21041196.
    [15]
    ZHENG Xianwei,YUAN Zhuang,DONG Zhen,et al. Smoothly varying projective transformation for line segment matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,183:129-146. doi: 10.1016/j.isprsjprs.2021.10.017
    [16]
    WANG Qiang,ZHANG Wei,LIU Xiaolong,et al. Line matching of wide baseline images in an affine projection space[J]. International Journal of Remote Sensing,2020,41(2):632-654. doi: 10.1080/01431161.2019.1646937
    [17]
    SHEN Liang,ZHU Jiahua,XIN Qin,et al. Robust line segment mismatch removal using point-pair representation and Gaussian-uniform mixture formulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,203:314-327. doi: 10.1016/j.isprsjprs.2023.08.003
    [18]
    刘肃艳,王竞雪,沈昭宇,等. 结合线对几何特征及单线描述符约束的直线匹配算法[J]. 武汉大学学报(信息科学版),2023,48(6):936-949.

    LIU Suyan,WANG Jingxue,SHEN Zhaoyu,et al. Line matching algorithm based on pair-wise geometric features and individual line descriptor constraints[J]. Geomatics and Information Science of Wuhan University,2023,48(6):936-949.
    [19]
    张珊,张卡,赵立科,等. 结合网状描述符和单应约束的近景影像直线匹配[J]. 地球信息科学学报,2022,24(11):2186-2197.

    ZHANG Shan,ZHANG Ka,ZHAO Like,et al. Close-range image line matching based on mesh descriptor and homography constraint[J]. Journal of Geo-information Science,2022,24(11):2186-2197.
    [20]
    VAKHITOV A,LEMPITSKY A. Learnable line segment descriptor for visual SLAM[J]. IEEE Access,2019,7:39923-39934. doi: 10.1109/ACCESS.2019.2901584
    [21]
    LANGE M,RAISCH C,SCHILLING A. WLD:a wavelet and learning based line descriptor for line feature matching[M]//KRÜGER J,NIESSNER M,STÜCKLER J. Vision,modeling,and visualization. Eindhoven:The Eurographics Association,2020:39-46.
    [22]
    PAUTRAT R,LIN J T,LARSSON V,et al. SOLD2:self-supervised occlusion-aware line description and detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:11368-11378.
    [23]
    YOON S,KIM A. Line as a visual sentence:context-aware line descriptor for visual localization[J]. IEEE Robotics and Automation Letters,2021,6(4):8726-8733. doi: 10.1109/LRA.2021.3111760
    [24]
    GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1777-1786.
    [25]
    郭永坤,朱彦陈,刘莉萍,等. 空频域图像增强方法研究综述[J]. 计算机工程与应用,2022,58(11):23-32.

    GUO Yongkun,ZHU Yanchen,LIU Liping,et al. Research review of space-frequency domain image enhancement methods[J]. Computer Engineering and Applications,2022,58(11):23-32.
    [26]
    王智奇,李荣冰,刘建业,等. 基于同态滤波和直方图均衡化的图像增强算法[J]. 电子测量技术,2020,43(24):75-80.

    WANG Zhiqi,LI Rongbing,LIU Jianye,et al. Image enhancement algorithm based on homomorphic filtering and histogram equalization[J]. Electronic Measurement Technology,2020,43(24):75-80.
    [27]
    HANA F M,MAULIDA I D. Analysis of contrast limited adaptive histogram equalization (CLAHE) parameters on finger knuckle print identification[J]. Journal of Physics:Conference Series,2021,1764. DOI: 10.1088/1742-6596/1764/1/012049.
    [28]
    JIANG Yifan,GONG Xinyu,LIU Ding,et al. EnlightenGAN:deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing,2021,30:2340-2349. doi: 10.1109/TIP.2021.3051462
    [29]
    高宇彤. 基于透视变换与LBD描述子约束的特征线匹配算法[D]. 阜新:辽宁工程技术大学,2022.

    GAO Yutong. Feature line matching algorithm based on perspective transformation and LBD descriptor constraint[D]. Fuxin:Liaoning Technical University,2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (114) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return