煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析

田子建, 侯明硕, 孙静, 杜欣欣, 石洋名

田子建,侯明硕,孙静,等. 煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析[J]. 工矿自动化,2024,50(7):136-146. DOI: 10.13272/j.issn.1671-251x.2024050085
引用本文: 田子建,侯明硕,孙静,等. 煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析[J]. 工矿自动化,2024,50(7):136-146. DOI: 10.13272/j.issn.1671-251x.2024050085
TIAN Zijian, HOU Mingshuo, SUN Jing, et al. Equivalent energy storage model coupled electromagnetic wave energy safety analysis of metal structures in underground coal mines[J]. Journal of Mine Automation,2024,50(7):136-146. DOI: 10.13272/j.issn.1671-251x.2024050085
Citation: TIAN Zijian, HOU Mingshuo, SUN Jing, et al. Equivalent energy storage model coupled electromagnetic wave energy safety analysis of metal structures in underground coal mines[J]. Journal of Mine Automation,2024,50(7):136-146. DOI: 10.13272/j.issn.1671-251x.2024050085

煤矿井下金属结构等效储能模型耦合电磁波能量安全性分析

基金项目: 国家自然科学基金资助项目(52074305);北京市教育委员会技术技能创新服务中心科研能力建设项目(110512400)。
详细信息
    作者简介:

    田子建(1964—),男,湖南望城人,教授,博士,博士研究生导师,主要研究方向为矿井监控与通信,E-mail:tianzj0726@126.com

  • 中图分类号: TD655

Equivalent energy storage model coupled electromagnetic wave energy safety analysis of metal structures in underground coal mines

  • 摘要: 煤矿井下无线通信设备发射的电磁波能量可以被周围金属结构耦合吸收,这种现象存在点燃矿井内爆炸性气体的危险。现有针对井下金属结构耦合电磁波安全性研究只是对金属结构等效阻性模型耦合电磁波能量进行分析,缺乏对金属结构耦合电磁波能量在时间上积累的储能过程研究。针对上述问题,提出一种适用于金属结构耦合−积累−释放电磁波能量研究的等效储能结构模型,即金属结构等效容性储能模型与金属结构等效感性储能模型。首先通过低衰减度传输线模型,推导出发射天线输出功率、发射天线与金属结构之间距离与接收端感应电压之间的关系。然后建立金属结构等效储能模型,推导出接收端参数与放电火花能量之间的数学关系式,分析了接收端参数对放电火花能量的影响。最后通过接收端感应电压与感应电压有效值的关系,推导出发射天线输出功率、发射天线与金属结构之间距离与放电火花能量之间的数学关系式,分析了发射天线输出功率、发射天线与金属结构之间距离对放电火花能量的影响,并给出在其他参数确定情况下2种金属结构等效储能模型各自的理论参考安全点。仿真结果表明:① 对于金属结构等效容性储能模型,放电火花能量随着等效储能电容、接收端感应电压有效值增大而增大,安全点向左偏移,对等效储能电容、接收端感应电压有效值的安全要求变得严苛。② 放电火花能量随着发射天线功率增大而增大,随着发射天线与金属结构之间距离增大而减小,得到金属结构等效容性储能模型理论参考安全点。③ 对于金属结构等效感性储能模型,放电火花能量随着等效储能电感、接收端感应电压有效值增大而增大,安全点向左偏移,对等效储能电感、接收端感应电压有效值的安全要求变得严苛。④ 放电火花能量随着发射天线功率增大而增大,随着发射天线与金属结构之间距离增大而减小,得到金属结构等效感性储能模型理论参考安全点。⑤ 对比2种金属结构储能模型理论参考安全点,得到金属结构等效容性储能模型的危险性远大于金属结构等效感性储能模型的结论。
    Abstract: The electromagnetic wave energy emitted by wireless communication equipment in coal mines can be coupled and absorbed by surrounding metal structures, which poses a risk of igniting explosive gases in the mine. The existing research on the safety of underground metal structure coupled electromagnetic waves only focuses on the analysis of the energy of metal structure equivalent impedance model coupled electromagnetic waves. It lacks research on the energy storage process of metal structure coupled electromagnetic wave energy accumulated over time. In order to solve the above problems, an equivalent energy storage structure model suitable for studying the coupling-accumulation-release electromagnetic wave energy of metal structures is proposed, namely the metal structure equivalent capacitive energy storage model and the metal structure equivalent inductive energy storage model. Firstly, by using a low attenuation transmission line model, the relationship between the output power of the transmitting antenna, the distance between the transmitting antenna and the metal structure, and the induced voltage at the receiving end is derived. Secondly, an equivalent energy storage model of metal structure is established. The mathematical relationship between the receiving end parameters and the discharge spark energy is derived. The influence of the receiving end parameters on the discharge spark energy is analyzed. Finally, the mathematical relationship between the output power of the transmitting antenna, the distance between the transmitting antenna and the metal structure, and the discharge spark energy is derived by analyzing the relationship between the induced voltage at the receiving end and the effective value of the induced voltage. The influence of the output power of the transmitting antenna and the distance between the transmitting antenna and the metal structure on the discharge spark energy is analyzed. The theoretical reference safety points of the equivalent energy storage models of the two metal structures are given under the condition of other parameters being determined. The simulation results show the following points. ① For the equivalent capacitive energy storage model of metal structures, the discharge spark energy increases with the increase of the effective values of the equivalent energy storage capacitor and the induced voltage at the receiving end, and the safety point shifts to the left. The safety requirements for the effective values of the equivalent energy storage capacitor and the induced voltage at the receiving end become stricter. ② The energy of the discharge spark increases with the increase of the transmitting antenna power, and decreases with the increase of the distance between the transmitting antenna and the metal structure. The theoretical reference safety point of the equivalent capacitive energy storage model of the metal structure is obtained. ③ For the equivalent inductive energy storage model of metal structures, the discharge spark energy increases with the increase of the effective values of the equivalent energy storage inductance and the induced voltage at the receiving end, and the safety point shifts to the left. The safety requirements for the effective values of the equivalent energy storage inductance and the induced voltage at the receiving end become stricter. ④ The energy of the discharge spark increases with the increase of the transmitting antenna power, and decreases with the increase of the distance between the transmitting antenna and the metal structure. The theoretical reference safety point of the equivalent inductive energy storage model of the metal structure is obtained. ⑤ Comparing the theoretical reference safety points of two metal structure energy storage models, it is concluded that the danger of the metal structure equivalent capacitive energy storage model is much greater than that of the metal structure equivalent inductive energy storage model.
  • 图  1   电磁波远场辐射模型

    Figure  1.   Far-field radiation model of electromagnetic waves

    图  2   等效有源接收回路

    Figure  2.   Equivalent active receiving loop

    图  3   传播介质等效传输线模型

    Figure  3.   Equivalent transmission line model of propagation medium

    图  4   含储能电容金属结构等效电路

    Figure  4.   Metal structure equivalent circuit with energy storage capacitor

    图  5   短路后直流等效电路

    Figure  5.   DC equivalent circuit after short circuit

    图  6   电容短路放电特点等效电路

    Figure  6.   Equivalent circuit of capacitor short-circuit discharge features

    图  7   放电火花能量WC与等效储能电容C的关系

    Figure  7.   The relationship curves between discharge spark energy WC and equivalent energy storage capacitor C

    图  8   放电火花能量WC与感应电压有效值Urms的关系

    Figure  8.   The relationship curves between discharge spark energy WC and effective value of induced voltage Urms

    图  9   金属结构等效感性储能电路

    Figure  9.   Equivalent inductive energy storage circuit of metal structure

    图  10   直流等价感性储能电路

    Figure  10.   DC equivalent inductive energy storage circuit

    图  11   放电火花能量WL与电感L的关系

    Figure  11.   The relationship curves between discharge spark energy WL and inductance L

    图  12   放电火花能量WL与感应电压有效值Urms的关系

    Figure  12.   The relationship curves between discharge spark energy WL and effective value of induced voltage Urms

    图  13   放电火花能量WC与距离XC、发射天线功率PC的关系

    Figure  13.   The relationship among discharge spark energy WC and distance XC , transmitting antenna power PC

    图  14   放电火花能量WL与距离XL、发射天线功率PL的关系

    Figure  14.   The relationship among discharge spark energy WL and distance XL, transmitting antenna power PL

  • [1] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.

    [2] 孙继平,彭铭. 矿井无线电波防爆安全发射功率研究[J]. 工矿自动化,2024,50(3):1-5.

    SUN Jiping,PENG Ming. Research on the safe transmission power of mine radio wave explosion prevention[J]. Journal of Mine Automation,2024,50(3):1-5.

    [3] GB/T 3836.1—2021爆炸性环境 第1部分:设备 通用要求[S].

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment-General requirements[S].

    [4]

    Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation - Guide:BS 6656[S].

    [5]

    EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:electrically- small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27. DOI: 10.1049/jiere.1986.0006

    [6] 彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.

    PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547.

    [7] 孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. DOI: 10.3969/j.issn.1000-1964.2013.06.018

    [8] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91.

    [9] 田子建,降滉舟,常琳,等. 半波振子结构在井下5G辐射场中的安全性分析[J]. 工矿自动化,2023,49(6):159-167.

    TIAN Zijian,JIANG Huangzhou,CHANG Lin,et al. Safety analysis of half wave oscillator structure in underground 5G radiation field[J]. Journal of Mine Automation,2023,49(6):159-167.

    [10] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.

    [11]

    MIKKI S M,ANTAR Y M M. A theory of antenna electromagnetic near field-Part I[J]. IEEE Transactions on Antennas and Propagation,2011,59(12):4691-4705. DOI: 10.1109/TAP.2011.2165499

    [12] 范思涵,杨维,田子建. 井下柱状金属结构接收电磁波能量安全性分析[J/OL]. 煤炭科学技术:1-9[2024-07-02]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231206.1855.003.html.

    FAN Sihan,YANG Wei,TIAN Zijian. Safety analysis of electromagnetic wave energy received by underground columnar metal structures[J/OL]. Coal Science and Technology:1-9[2024-07-02]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231206.1855.003.html.

    [13] 田子建,王帅,张立亚,等. 矿井射频能量对雷管安全性的影响[J]. 中国矿业大学学报,2011,40(1):18-22.

    TIAN Zijian,WANG Shuai,ZHANG Liya,et al. Influence of radio frequency energy on the safety of blasting caps in the mine[J]. Journal of China University of Mining & Technology,2011,40(1):18-22.

    [14] 董红涛,田子建,侯明硕,等. 金属振子结构在矿井5G辐射场中的安全功率分析[J]. 工矿自动化,2023,49(12):108-113.

    DONG Hongtao,TIAN Zijian,HOU Mingshuo,et al. Safety power analysis of metal oscillator structure in mine 5G radiation field[J]. Journal of Mine Automation,2023,49(12):108-113.

    [15] GB/T 3836.4—2021爆炸性环境 第4部分:由本质安全型“i” 保护的设备[S].

    GB/T 3836.4−2021 Explosive atmospheres-Part 4:Equipment protection by intrinsic safety i. [S].

    [16] 范思涵,杨维,刘俊波. 井下金属结构近场耦合大环发射天线电磁波能量安全性分析[J]. 工矿自动化,2022,48(6):118-127.

    FAN Sihan,YANG Wei,LIU Junbo. Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna[J]. Journal of Mine Automation,2022,48(6):118-127.

    [17] 刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.

    LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130.

    [18] 康骞,许春雨,田慕琴,等. 电势电容电路短路火花放电影响因素分析[J]. 工矿自动化,2020,46(8):38-43,63.

    KANG Qian,XU Chunyu,TIAN Muqin,et al. Analysis of influencing factors of short-circuit spark discharge in electric potential capacitance circuit[J]. Industry and Mine Automation,2020,46(8):38-43,63.

    [19] 刘树林,钟久明,樊文斌,等. 电容电路短路火花放电特性及其建模研究[J]. 煤炭学报,2012,37(12):2123-2128.

    LIU Shulin,ZHONG Jiuming,FAN Wenbin,et al. Short circuit discharge characteristics of the capacitive circuit and its mathematical model[J]. Journal of China Coal Society,2012,37(12):2123-2128.

    [20] 钟久明,刘树林,崔强. IEC火花试验装置的电容短路放电特性数学仿真分析[J]. 电工电能新技术,2014,33(2):29-34.

    ZHONG Jiuming,LIU Shulin,CUI Qiang. Short circuit discharge behavior of capacitive circuit and its mathematical simulation analysis[J]. Advanced Technology of Electrical Engineering and Energy,2014,33(2):29-34.

    [21]

    HASEGAWA M,TAKAHASHI K,KAWAMURA D,et al. Comparison of transfer and erosion shapes on Ag and AgSnO2 contacts caused by break arc discharges in a DC inductive load circuit[C]. IEEE 59th Holm Conference on Electrical Contacts ,Newport,2013:1-7.

    [22] 朱林,刘树林,刘柏清,等. 本质安全低压直流电路放电理论及数值研究综述[J]. 工矿自动化,2022,48(8):16-25.

    ZHU Lin,LIU Shulin,LIU Boqing,et al. Review of discharge theory and numerical research on intrinsically safe low voltage DC circuits[J]. Journal of Mine Automation,2022,48(8):16-25.

    [23] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州:中国矿业大学,2008.

    LIU Jianhua. A study on discharge theory and non-explosion evaluating method of the intrinsically safe circuits for explosive atmospheres[D]. Xuzhou:China University of Mining and Technology,2008.

  • 期刊类型引用(5)

    1. 杜锋,张义洋,王凯,周爱桃,吴建松,解北京. 氮气驱替甲烷教学实验设计. 实验室研究与探索. 2025(03): 1-5 . 百度学术
    2. 徐小马,燕湘湘,黄姝羽. 不同注气成分置驱瓦斯效果数值模拟研究. 工矿自动化. 2024(04): 112-120 . 本站查看
    3. 李柏,刘鹏,胡彪,龙航,闫冬洁,季鹏飞. 煤层注CO_2驱替抽采瓦斯的数值模拟及敏感性分析. 矿业研究与开发. 2024(12): 169-176 . 百度学术
    4. 郑学召,曹橙誉. CO_2驱替煤体内部CH_4气体变化模拟研究. 当代化工研究. 2022(19): 1-6 . 百度学术
    5. 撒占友,吴静波,陆卫东,杨永亮,张鑫,卢守青,刘杰. 注二氧化碳强化煤层气开采研究进展. 煤矿安全. 2022(10): 32-43 . 百度学术

    其他类型引用(6)

图(14)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  49
  • PDF下载量:  29
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-07-10
  • 网络出版日期:  2024-07-29
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回