Research on a wireless positioning algorithm for underground personnel
-
摘要: 针对传统井下指纹定位算法存在需要采集大量指纹数据和定位精度不高的问题,提出了一种差分鱼群优化最小二乘支持向量机(DEAFSA-LSSVM)的井下人员无线定位算法。首先将井下实验区域划分为多个小区域,并利用克里金插值算法建立指纹数据库;然后利用差分进化与人工鱼群混合智能算法优化正则化参数和核函数宽度,建立最小二乘支持向量机算法模型,利用无线采集接收终端采集待定位点的无线信息数据,通过最小二乘支持向量机算法模型计算出其所属小区域;最后利用小区域内无线信息数据,通过加权K近邻算法进行实时定位。实验结果表明:该定位算法的收敛速度快,分类准确,准确率达到98.87%;定位精度高,平均定位误差为1.51 m,比未经优化的最小二乘支持向量机算法的定位精度提高18.82%。Abstract: For problems that traditional underground fingerprint positioning algorithm needs to collect a large number of fingerprint data and positioning accuracy is not high, a wireless positioning algorithm for underground personnel based on differential evolution and artificial fish swarm algorithm optimization least square support vector machine (DEAFSA-LSSVM) was proposed. Firstly, the underground experimental area is divided into several small areas, and the fingerprint database is established by Kriging interpolation algorithm. Secondly, the hybrid intelligent algorithm of differential evolution and artificial fish swarm is used to optimize regularization parameters and width of kernel function, and the least squares support vector machine algorithm model is established. The wireless acquisition and reception terminal is used to collect wireless information data of undetermined site, and its small area is calculated by the least squares support vector machine algorithm model. Finally, the wireless information data in the small area is used for real-time positioning by weighted K-nearest neighbor algorithm. The experimental results show that the algorithm has high convergence speed and high classification accuracy, the classification accuracy is 98.87%; and has high positioning accuracy, the average positioning error is 1.51 m, which is 18.82% higher than that of the least squares support vector machine algorithm without optimization.
-
-
期刊类型引用(12)
1. 高翼飞,张晓航,畅明,葛帅帅,陈伟. 基于时空图卷积网络的瓦斯体积分数预警效果研究. 中国安全生产科学技术. 2024(01): 58-64 . 百度学术
2. 薛生,郑晓亮,袁亮,来文豪,张玉婷. 基于机器学习的煤与瓦斯突出预测研究进展及展望. 煤炭学报. 2024(02): 664-694 . 百度学术
3. 李宛桐,夏方方,朱旖旎,赵胜磊,杨紫云,王金鑫. 基于机器学习的煤与瓦斯突出危险性评估和预警研究进展. 中国煤炭. 2024(07): 52-62 . 百度学术
4. 赵国强,王留洋,刘雨竹,卢万杰,王志中. 瓦斯突出等级预测模型. 辽宁工程技术大学学报(自然科学版). 2023(01): 32-39 . 百度学术
5. 秦岩,盛武. 基于D-S证据理论和贝叶斯网络的煤与瓦斯突出事故致因研究. 煤矿安全. 2023(05): 153-160 . 百度学术
6. 李燕,南新元,蔺万科. 煤与瓦斯突出危险性预测. 工矿自动化. 2022(03): 99-106 . 本站查看
7. 范京道,黄玉鑫,闫振国,李川,王春林,贺雁鹏. ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究. 工矿自动化. 2022(09): 134-139 . 本站查看
8. 张婧. 多源数据融合的矿井通风瓦斯灾害预警平台. 煤炭技术. 2022(10): 237-239 . 百度学术
9. 薛峰,李希建,徐恩宇. 基于GA-SVM耦合模型的煤与瓦斯突出危险性预测. 矿业工程研究. 2022(03): 39-44 . 百度学术
10. 赵帅. 基于WOA-KELM煤与瓦斯突出预测. 科技经济导刊. 2021(01): 58-59 . 百度学术
11. 杨凯帆,黄婧,谢枭,王若昕,沈丹青,何丽娜,陈汝科. 基于最小二乘支持向量机的短期负荷预测. 电工材料. 2021(01): 51-53 . 百度学术
12. 雷思友,刘洁,方信. 煤与瓦斯突出影响因素综合评价研究——基于改进熵权法+灰色系统关联法的研究. 煤. 2021(07): 21-24+56 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 63
- HTML全文浏览量: 19
- PDF下载量: 15
- 被引次数: 20