Research on vibration signal prediction of coal mine machinery
-
摘要: 根据煤矿机械振动信号高低频组成成分变化规律的差异,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的煤矿机械振动信号组合预测方法。将滚动轴承振动信号进行EMD分解,得到相对平稳的本征模态函数(IMF)分量,并将波动程度相近的IMF分量进行重构,得到高频子序列和低频子序列,采用SVM分别对高频子序列和低频子序列进行预测,将2个预测结果叠加,得到最终预测值。选取轴承实验数据对组合预测方法的有效性进行验证,结果表明该方法的均方根误差、平均绝对误差和平均绝对百分比误差均小于直接预测方法。将该组合预测方法应用于某选煤厂主井带式输送机滚动轴承状况预测,预测结果与实际情况相符。Abstract: According to variation differences of high frequency and low frequency components of coal mine machinery vibration signal, a combined vibration signal prediction method of coal mine machinery based on empirical mode decomposition (EMD) and support vector machine (SVM) is proposed. The vibration signal of rolling bearing is decomposed by EMD to obtain relatively stable instrinsic mode function (IMF) components, and the IMF components with similar degree of the fluctuation are reconstructed to obtain high-frequency and low-frequency subsequences. The high-frequency subsequence and low-frequency subsequence are predicted by SVM respectively, and then the final prediction value is obtained after superposing the two prediction results. The bearing experimental data are selected to verify effectiveness of the method. The results show that the root mean square error, average absolute error and average absolute percentage error of the method are smaller than that of the direct prediction method.The results show that the root mean square error, average absolute error and average absolute percentage error of the combined predition method are all smaller than those of direct prediction method. The combined prediction method is applied to condition prediction of rolling bearing of the belt conveyor in main shaft of a coal preparation plant, and the prediction results are consistent with actual situation.
-
-
期刊类型引用(12)
1. 刘涛,李博,夏蕊,李瑞,王学文. 不同工况下可见-近红外光谱的煤矸识别研究. 光谱学与光谱分析. 2024(03): 821-828 . 百度学术
2. 李嘉豪,司垒,王忠宾,魏东,顾进恒. 综放工作面煤矸识别技术及其应用. 仪器仪表学报. 2024(01): 1-15 . 百度学术
3. 高齐云,周丽,易泽邦,陈正山. 颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响. 岩矿测试. 2024(02): 234-246 . 百度学术
4. 李久明. 煤岩识别技术的发展现状及展望. 陕西煤炭. 2023(01): 206-209 . 百度学术
5. 姬洪亮,白璐,王宁,秦听听. 基于光谱曲线特征的内河航运环境污染遥感监测方法. 绿色科技. 2023(08): 131-134 . 百度学术
6. 杨恩,王世博,宣统. 融合近红外光谱的煤岩界面分布感知研究. 工矿自动化. 2022(07): 22-31+42 . 本站查看
7. 吕渊博,王世博,葛世荣,周悦,王赛亚,柏永泰. 近红外光谱煤岩识别装置研制. 工矿自动化. 2022(07): 32-42 . 本站查看
8. 李瑞,李博,王学文,刘涛,李廉洁,樊书祥. 基于XGBoost与可见-近红外光谱的煤矸识别方法. 光谱学与光谱分析. 2022(09): 2947-2955 . 百度学术
9. 许献磊,王一丹,朱鹏桥,马正. 基于高频雷达波的煤岩层位识别与追踪方法研究. 煤炭科学技术. 2022(07): 50-58 . 百度学术
10. 张锦旺,王家臣,何庚,程东亮,韩星,范天瑞. 液体介入提升煤矸识别效率的试验研究. 煤炭学报. 2021(S2): 681-691 . 百度学术
11. 杨恩,王世博,王赛亚,周悦. 典型煤岩反射光谱无监督感知方法研究. 工矿自动化. 2020(01): 50-58 . 本站查看
12. 王赛亚,王世博,葛世荣,向阳,周悦,杨恩,吕渊博. 综放工作面煤岩近红外光谱特征与机理. 煤炭学报. 2020(08): 3024-3032 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 60
- HTML全文浏览量: 11
- PDF下载量: 20
- 被引次数: 27