基于特征融合的提升机逆变器故障诊断

吴传龙, 陈伟, 刘晓文, 史新国, 刘柯, 任晓红

吴传龙,陈伟,刘晓文,等.基于特征融合的提升机逆变器故障诊断[J].工矿自动化,2021,47(5):46-51.. DOI: 10.13272/j.issn.1671-251x.17772
引用本文: 吴传龙,陈伟,刘晓文,等.基于特征融合的提升机逆变器故障诊断[J].工矿自动化,2021,47(5):46-51.. DOI: 10.13272/j.issn.1671-251x.17772
WU Chuanlong, CHEN Wei, LIU Xiaowen, SHI Xinguo, LIU Ke, REN Xiaohong. Feature fusion based fault diagnosis of hoist inverter[J]. Journal of Mine Automation, 2021, 47(5): 46-51. DOI: 10.13272/j.issn.1671-251x.17772
Citation: WU Chuanlong, CHEN Wei, LIU Xiaowen, SHI Xinguo, LIU Ke, REN Xiaohong. Feature fusion based fault diagnosis of hoist inverter[J]. Journal of Mine Automation, 2021, 47(5): 46-51. DOI: 10.13272/j.issn.1671-251x.17772

基于特征融合的提升机逆变器故障诊断

基金项目: 

“十三五”国家重点研发计划资助项目(2017YFC0804400,2017YFC0804401)

淄矿集团智慧矿山关键技术研发开放基金资助项目(2019LH08)

详细信息
  • 中图分类号: TD633/534

Feature fusion based fault diagnosis of hoist inverter

  • 摘要: 矿井提升机逆变器故障诊断的难点在于提取表征故障的特征,目前主要利用信号处理方法得到故障统计特征,或通过神经网络提取故障深度特征。提升机逆变器在实际工作环境中,受背景噪声和负载变化等因素影响,运用单一的特征提取方法难以获得能有效表征故障的特征,导致提升机逆变器故障诊断准确率低。针对上述问题,提出了一种基于统计特征与深度特征融合的提升机逆变器故障诊断方法。首先,利用希尔伯特-黄变换(HHT)对逆变器输出电流信号进行优化集合经验模态分解(MEEMD),提取故障统计特征,同时利用压缩激励密集连接卷积网络(SE-DenseNet)提取输出电流信号的深度特征;然后,利用局部线性判别分析(LFDA)对2种特征的组合进行融合降维处理,得到统计特征和深度特征的低维融合特征;最后,将低维融合特征输入极限学习机,实现逆变器故障分类。针对提升机逆变器中单个IGBT开路故障进行实验,结果表明,该方法得到的低维融合特征比单一特征的故障表征能力更强,有效提高了故障识别准确率。
    Abstract: The difficulty in fault diagnosis of mine hoist inverters lies in extracting the features that characterize faults. At present, signal processing methods are mainly used to obtain fault statistical features, or the fault depth features are extracted by neural networks. In the actual working environment, the hoist inverter is affected by factors such as background noise and load changes. Therefore, it is difficult to obtain features that can characterize the faults effectively by using a single feature extraction method, resulting in low fault diagnosis accuracy of the hoist inverter. In order to solve the above problems, a fault diagnosis method of hoist inverter based on the fusion of statistical features and depth features is proposed. Firstly, the Hilbert-Huang transform(HHT) is used to conduct modified ensemble empirical mode decomposition(MEEMD) of the inverter output current signal so as to obtain the fault statistical features. At the same time, the squeeze and excitation with densely connected convolutional network(SE-DenseNet) is used to extract the depth features of the output current signal. Secondly, the local fisher discriminant analysis(LFDA) is used to perform fusion and dimensionality reduction processing on the combination of the two features to obtain low-dimensional fusion features of statistical features and depth features. Finally, the low-dimensional fusion features are input to the extreme learning machine to obtain inverter fault classification. Experiments are conducted for a single IGBT open-circuit fault in the hoist inverter. The results show that the low-dimensional fusion features obtained by this method are more capable of fault characterization than single features, which improves the fault recognition accuracy effectively.
  • 期刊类型引用(15)

    1. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 百度学术
    2. 赵一鸣,相志,张农,戴京辰. 雷达探测中煤岩介质相对介电常数变化特征. 采矿与安全工程学报. 2024(06): 1222-1229 . 百度学术
    3. 周素静,康楠,余敏. 基于变形分数阶Lorenz混沌系统的煤岩界面图像分割方法. 金属矿山. 2024(12): 246-251 . 百度学术
    4. 吴钰晶. 基于峰值检测与栅格化二次拟合算法的微粗糙裸露断面拾取方法. 煤炭工程. 2024(12): 155-160 . 百度学术
    5. 刘送永,程诚,吴洪状,崔玉明,孟德远,司垒. 基于煤岩界面识别的采煤机智能调高控制方法研究. 煤炭科学技术. 2024(S2): 186-200 . 百度学术
    6. 刘亚军,魏春明,杨德斌,郭劲松. 基于探地雷达技术的邻井探测与仿真研究. 物联网技术. 2023(02): 42-46 . 百度学术
    7. 索永录. 智能综采机组控制目标及采煤机割煤高度控制方法. 西安科技大学学报. 2023(01): 9-17 . 百度学术
    8. 贺艳军,李海雄,胡淼龙,薛竞飞. 煤岩识别技术发展综述. 工矿自动化. 2023(12): 1-11 . 本站查看
    9. 刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术. 煤炭科学技术. 2022(07): 67-74 . 百度学术
    10. 杨宇博,田慕琴. 基于麻雀优化的二维Otsu煤岩界面识别方法. 现代电子技术. 2022(19): 49-53 . 百度学术
    11. 王世佳,王世博,刘万里. 采煤机截割高度测量模型与测量误差分析. 仪器仪表学报. 2021(04): 140-149 . 百度学术
    12. 刘万里,马修泽,张学亮. 基于探地雷达的特厚煤层厚度动态探测技术. 煤炭学报. 2021(08): 2706-2714 . 百度学术
    13. 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术. 煤炭学报. 2020(06): 1973-1983 . 百度学术
    14. 高士岗,高登彦,欧阳一博,柴敬,张丁丁,任文清. 中薄煤层智能开采技术及其装备. 煤炭学报. 2020(06): 1997-2007 . 百度学术
    15. 程建远,朱梦博,王云宏,岳辉,崔伟雄. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术. 煤炭学报. 2019(08): 2285-2295 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  86
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 25
出版历程
  • 刊出日期:  2021-05-19

目录

    /

    返回文章
    返回