强噪声背景与变转速工况条件下滚动轴承故障诊断研究

宫涛, 杨建华, 单振, 刘后广

宫涛,杨建华,单振,等.强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J].工矿自动化,2021,47(7):63-71.. DOI: 10.13272/j.issn.1671-251x.17757
引用本文: 宫涛,杨建华,单振,等.强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J].工矿自动化,2021,47(7):63-71.. DOI: 10.13272/j.issn.1671-251x.17757
GONG Tao, YANG Jianhua, SHAN Zhen, LIU Houguang. Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio[J]. Journal of Mine Automation, 2021, 47(7): 63-71. DOI: 10.13272/j.issn.1671-251x.17757
Citation: GONG Tao, YANG Jianhua, SHAN Zhen, LIU Houguang. Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio[J]. Journal of Mine Automation, 2021, 47(7): 63-71. DOI: 10.13272/j.issn.1671-251x.17757

强噪声背景与变转速工况条件下滚动轴承故障诊断研究

基金项目: 

国家自然科学基金资助项目(12072362)

详细信息
  • 中图分类号: TD633

Research on rolling bearing fault diagnosis under strong noise background and variable speed working conditio

  • 摘要: 煤矿机械设备工作环境恶劣,背景噪声强,轴承早期的故障特征信号微弱,从传感器所测得的振动信号中提取反映故障状态的信息比较困难;同时,煤矿机械设备工作在高速、冲击等工况下,是典型的非平稳工况,不稳定的激励及复杂工况直接导致提取轴承故障特征信号困难。针对以上问题,以矿井提升设备的运行工况为背景,提出了一种基于计算阶次分析与自适应随机共振的滚动轴承故障诊断方法。首先,模拟了矿井提升机运行过程中典型的变转速工况,分别构造故障仿真信号,并采集了轴承振动实验信号;其次,通过等角度采集同步时域鉴相序列,利用计算阶次分析将轴承非平稳的振动信号重采样为平稳信号;然后,利用变分模态分解(VMD)方法将平稳信号分解为若干本征模态函数(IMF)分量,通过轴承故障阶次实现对轴承故障类型的判断;最后,利用自适应随机共振方法来增强轴承故障特征阶次,从而实现故障特征的提取与增强,达到故障诊断的目的。仿真和实验结果证明了该方法的有效性。将该方法与最大相关峭度反褶积(MCKD)方法进行了对比,结果表明,MCKD方法虽然也可以观察到故障特征阶次,但是特征阶次比周围干扰阶次幅值仅高0.001 96,低于本文所提方法的结果,说明了本文所提方法具有一定的优越性。
    Abstract: The working environment of coal mine mechanical equipment is harsh, the background noise is strong, and the early fault characteristic information of the bearing is weak. Therefore, it is difficult to extract the information reflecting the fault state from the vibration signal measured by the sensor. Moreover, the coal mine mechanical equipment work in high speed, shock and other working conditions, which are typical non-stationary working conditions. The unstable excitation and complex working conditions directly lead to the difficulty of extracting the bearing fault characteristic signal. In order to solve the above problems, a rolling bearing fault diagnosis method based on computed order analysis and adaptive stochastic resonance is proposed in the background of the working conditions of mine hoisting equipment. Firstly, the method simulates the typical variable speed working conditions in the operation of mine hoist, constructs the fault simulation signals and collects the experimental signals of bearing vibration. Secondly, by collecting synchronous time-domain key-phase signal at equal angles, the non-stationary vibration signal of the bearing is resampled into a stationary signal by using computed order analysis. Thirdly, the stationary signal is decomposed into a number of intrinsic mode function (IMF) components by using the variational mode decomposition (VMD) method, and the bearing fault type is judged by the bearing fault order. Finally, the adaptive stochastic resonance method is used to enhance the bearing fault characteristic order so as to achieve the extraction and enhancement of fault characteristics for fault diagnosis. The simulation and experimental results prove the effectiveness of the method. And the method is compared with the maximum correlation kurtosis deconvolution (MCKD) method. The results show that although the MCKD method can also observe the fault characteristic order, but the characteristic order is only 0.001 96 higher than the amplitude of the surrounding interference order, which is lower than the results of the proposed method, indicating the superiority of the proposed method.
  • 期刊类型引用(14)

    1. 郗涛,王博,吴贤慧,王莉静,张建业. 基于GMM的流体旋转设备运行可靠性在线评价方法. 流体机械. 2024(02): 83-91 . 百度学术
    2. 杨福瑞,赵嘉健. 复杂多变工况下高铁轮对轴承故障识别研究. 机械设计与制造工程. 2024(03): 92-96 . 百度学术
    3. 张超,买买提热依木·阿布力孜. 基于EOE_LMD和阶次跟踪分析的变转速轴承故障诊断. 振动与冲击. 2024(07): 308-316 . 百度学术
    4. 孙俊静,顾幸生. 基于注意力机制多尺度卷积神经网络的轴承故障诊断. 华东理工大学学报(自然科学版). 2024(02): 247-256 . 百度学术
    5. 徐海涛,杨涛,周生喜. 自构建关联噪声下的随机共振及其在故障诊断上的应用. 振动与冲击. 2024(11): 297-305 . 百度学术
    6. 武杰,卢振连,马洪儒,朱艳芳,吴耀春,薛晓峰,姜阔胜. 基于谐波匹配补偿和无键相阶次跟踪的轴承故障诊断. 工矿自动化. 2023(02): 125-133+140 . 本站查看
    7. 魏义敏,刘辉,杨乐红. 基于角域重采样与VMD的电梯曳引轮轴承故障诊断方法. 机电工程. 2023(08): 1259-1266 . 百度学术
    8. 齐晓轩,王珊. 基于角域重采样的宽度迁移学习算法. 制造技术与机床. 2023(09): 25-33 . 百度学术
    9. 杨春才,李向磊,吕晓伟. 煤机设备轴承故障诊断方法. 工矿自动化. 2023(12): 147-151 . 本站查看
    10. 李春锋,马星河,刘广朋. 基于改进VMD的矿用电缆局放信号降噪方法. 能源与环保. 2023(12): 268-274 . 百度学术
    11. 李金才,付文龙,王仁明,陈星,孟嘉鑫. 基于深度网络的滚动轴承智能故障诊断. 工矿自动化. 2022(04): 78-88 . 本站查看
    12. 蒋妮娜. 主井提升机电控系统电流和速度脉动故障分析与处理. 矿山机械. 2022(07): 24-26 . 百度学术
    13. 杨晓娜,刘志远,王蔚,周佳,许亚伟,邓珂. 报修信息生命周期化采集下的电子设备故障快速诊断方法. 测试技术学报. 2022(05): 455-460 . 百度学术
    14. 吴冬梅,王福齐,李贤功,唐润,张新建. 轴承智能故障诊断. 工矿自动化. 2022(09): 49-55 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  166
  • HTML全文浏览量:  32
  • PDF下载量:  32
  • 被引次数: 22
出版历程
  • 刊出日期:  2021-07-19

目录

    /

    返回文章
    返回