FAN Shoujun, CHEN Xilin, WEI Liangyue, et al. An underground coal mine multi-target detection algorithm[J]. Journal of Mine Automation,2024,50(12):173-182. DOI: 10.13272/j.issn.1671-251x.2024090035
Citation: FAN Shoujun, CHEN Xilin, WEI Liangyue, et al. An underground coal mine multi-target detection algorithm[J]. Journal of Mine Automation,2024,50(12):173-182. DOI: 10.13272/j.issn.1671-251x.2024090035

An underground coal mine multi-target detection algorithm

More Information
  • Received Date: September 10, 2024
  • Revised Date: December 28, 2024
  • Available Online: December 05, 2024
  • Currently, underground coal mine target detection algorithms based on deep learning show poor performance in detecting complex small targets under conditions of uneven light intensity distribution, complex target environments, and imbalanced multi-class target scale distribution, often resulting in missed detection and false detection. To address these issues, based on the single-stage target detection algorithm YOLOv8n, this study proposed an underground coal mine multi-target detection algorithm based on feature extraction by dynamic snake convolution (FEDSC)-feature fusion by bi-directional feature pyramid network and semantic and detail fusion (FFBD). FEDSC replaced the backbone network of YOLOv8n to expand the receptive field, while FFBD acted as the neck network to reduce target false detection and missed detection. Additionally, a decoupling detection head of SIoU was used as the detection layer to improve the model's adaptability to small targets and the convergence speed. The results showed that: ① The mAP@0.5 of the FEDSC-FFBD algorithm was 97.00%, the number of model parameters was 4.22×106, and the number of floating point operations per second was 21.7×109. ② The mAP@0.5 of the FEDSC-FFBD alorithm was 3.40% higher than the YOLOv8n algorithm, and the recognition accuracy of the helmet small target was 90.90%, 11% higher than the YOLOv8n algorithm. ③ Compared with other YOLO series algorithms, the FEDSC-FFBD algorithm achieved the highest mAP@0.5, which was 3.60%, 1%, 10.50%, and 6.40% higher than YOLOv5s, YOLOv9c, YOLOv10n, and YOLOv11n algorithms, respectively. ④ The FEDSC-FFBD algorithm improved the detection accuracy of multi-class targets and reduced missed detection and false detection of small targets under conditions of uneven light intensity distribution, complex target environments, and imbalanced target scale distribution in underground coal mine. The underground coal mine multi-target detection algorithm based on FEDSC-FFBD overcame the challenge of small-scale target detection caused by uneven light intensity distribution without relying on image quality enhancement algorithms.

  • [1]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [2]
    王树奇,刘贝,邹斐. 一种新的矿井监控视频增强目标检测算法[J]. 西安科技大学学报,2019,39(2):347-353.

    WANG Shuqi,LIU Bei,ZOU Fei. A new image enhancement target detection algorithm based on monitoring video in coal mine tunnel[J]. Journal of Xi'an University of Science and Technology,2019,39(2):347-353.
    [3]
    寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649. DOI: 10.11999/JEIT220725

    KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649. DOI: 10.11999/JEIT220725
    [4]
    崔铁军,王凌霄. YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J]. 中国安全生产科学技术,2021,17(10):66-71.

    CUI Tiejun,WANG Lingxiao. Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J]. Journal of Safety Science and Technology,2021,17(10):66-71.
    [5]
    董彦强,程德强,张云鹤,等. 基于注意力和重构特征融合的轻量级煤矿安全帽检测方法[J]. 计算机工程与应用,2024,60(15):297-306. DOI: 10.3778/j.issn.1002-8331.2304-0421

    DONG Yanqiang,CHENG Deqiang,ZHANG Yunhe,et al. Lightweight coal mine safety helmet detection method based on attention and reconfiguration feature fusion[J]. Computer Engineering and Applications,2024,60(15):297-306. DOI: 10.3778/j.issn.1002-8331.2304-0421
    [6]
    李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207. DOI: 10.3778/j.issn.1002-8331.1711-0282

    LI Weishan,WEI Chen,WANG Lin. Improved faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207. DOI: 10.3778/j.issn.1002-8331.1711-0282
    [7]
    LI Dongjun,ZHANG Zhenxin,XU Zhihua,et al. An image-based hierarchical deep learning framework for coal and gangue detection[J]. IEEE Access,2019,7. DOI: 10.1109/ACCESS.2019.2961075.
    [8]
    LIANG Bin,WANG Zhongbin,SI Lei,et al. A novel pressure relief hole recognition method of drilling robot based on SinGAN and improved faster R-CNN[J]. Applied Sciences,2022,13(1). DOI: 10.3390/APP13010513.
    [9]
    章赛,纪凡,卢才武,等. 低照度下改进YOLOX的煤矿无人电机车轨道障碍物检测方法[J]. 安全与环境学报,2024,24(3):952-961.

    ZHANG Sai,JI Fan,LU Caiwu,et al. An improved YOLOX detection method for tracking obstacles of unmanned electric locomotives in coal mines under low lighting[J]. Journal of Safety and Environment,2024,24(3):952-961.
    [10]
    唐俊,李敬兆,石晴,等. 基于Faster−YOLOv7的带式输送机异物实时检测[J]. 工矿自动化,2023,49(11):46-52,66.

    TANG Jun,LI Jingzhao,SHI Qing,et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52,66.
    [11]
    HUANG Kaifeng,LI Shiyan,CAI Feng,et al. Detection of large foreign objects on coal mine belt conveyor based on improved[J]. Processes,2023,11(8). DOI: 10.3390/PR11082469.
    [12]
    LUO Bingxin,KOU Ziming,HAN Cong,et al. A faster and lighter detection method for foreign objects in coal mine belt conveyors[J]. Sensors,2023,23(14). DOI: 10.3390/S23146276.
    [13]
    杨文轲,孟祥瑞,王向前. 基于改进YOLOv7的煤矿工人不安全行为识别方法[J]. 哈尔滨商业大学学报(自然科学版),2024,40(6):664-670.

    YANG Wenke,MENG Xiangrui,WANG Xiangqian. Method for identifying unsafe behaviors of coal mine workers based on improved YOLOv7[J]. Journal of Harbin University of Commerce(Natural Sciences Edition),2024,40(6):664-670.
    [14]
    田佳伟, 唐子山. 基于边缘计算和ST−YOLO的矿井智能监控技术研究[J]. 煤炭工程, 2024, 56(7): 165-173.

    TIAN Jiawei, TANG Zishan. Mine intelligent monitoring technology based on edge computing and ST-YOLO.[J]. Coal Engineering, 2024, 56(7): 165-173.
    [15]
    QI Yaolei,HE Yuting,QI Xiaoming,et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]. IEEE/CVF International Conference on Computer Vision ,Paris,2023:6070-6079.
    [16]
    HOU Qibin,ZHOU Daquan,FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:13713-13722.
    [17]
    TAN Mingxing,PANG Ruoming,LE Q V. EfficientDet:scalable and efficient object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10778-10787.
    [18]
    ZHOU Shilong,ZHOU Haijin. Detection based on semantics and a detail infusion feature pyramid network and a coordinate adaptive spatial feature fusion mechanism remote sensing small object detector[J]. Remote Sensing,2024,16(13). DOI: 10.3390/RS16132416.
    [19]
    CHEN Fuxun,ZHANG Lanxin,KANG Siyu,et al. Soft-NMS-enabled YOLOv5 with SIOU for small water surface floater detection in UAV-captured images[J]. Sustainability,2023,15(14). DOI: 10.3390/SU151410751.
    [20]
    XIE Weining,SUN Xiaoyong,MA Weifeng. A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8[J]. Measurement Science and Technology,2024,35(5). DOI: 10.1088/1361-6501/AD296D.
  • Related Articles

    [1]ZHU Hongwei, KANG Zhongquan, SONG Binglin, FENG Panfei. Damage characteristics and support optimization of roadway surrounding rock in near-vertical coal seams under combined dynamic and static loads[J]. Journal of Mine Automation, 2025, 51(2): 138-147. DOI: 10.13272/j.issn.1671-251x.2024120019
    [2]XIE Panshi, FANG Jiarui, HU Bosheng, ZHANG Bo, ZHANG Xi, DUAN Siyu. Deformation and failure characteristics of soft rock tunnel surrounding rock under mining and water immersion conditions[J]. Journal of Mine Automation, 2024, 50(12): 27-35, 92. DOI: 10.13272/j.issn.1671-251x.2024100064
    [3]MENG Jian, ZHU Changhua, NIU Zhijun, WANG Xufeng, LYU Hao. Research on optimization of coal roadway support parameters and equipment technology in Tianshuibao Coal Mine[J]. Journal of Mine Automation, 2024, 50(3): 151-159. DOI: 10.13272/j.issn.1671-251x.2024010016
    [4]FANG Xinqiu, FENG Haotian, LIANG Minfu, CHEN Ningning, WU Gang, SONG Yang. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation, 2023, 49(6): 78-87. DOI: 10.13272/j.issn.1671-251x.18107
    [5]WANG Jiqiang, LI Zhen, MENG Hui, HOU Moyu, DONG Guofeng, YANG Qingshan, LIU Tongyu. Design of mine-used hot-wire-based optical fiber wind speed sensor[J]. Journal of Mine Automation, 2021, 47(5): 30-34. DOI: 10.13272/j.issn.1671-251x.17740
    [6]KANG Zhijian, ZHANG Hongjuan, GAO Yan, WANG Yu, JIN Baoquan. Design of coal mine optical fiber sensing emergency communication system[J]. Journal of Mine Automation, 2020, 46(11): 72-76.. DOI: 10.13272/j.issn.1671 -251x.2020050081
    [7]WEI Shi-ming, CHAI Jing, YIN Shi-xian. Research of Pre-peak Deformation Detection of Rock with Fiber Bragg Grating Sensing[J]. Journal of Mine Automation, 2011, 37(3): 29-32.
    [8]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [9]WEI Shi-ming~, CHAI Jing~, XU Li~. Research of Mine-used Fire Detection System by Use of Fiber Bragg Grating[J]. Journal of Mine Automation, 2010, 36(5): 40-42.
    [10]LI Wei~, ZHAO Cheng-bin~, SONG E-nuo~, QI Xiang-qian~. Design of Fiber-optic Repeater System in Mine Based on DSP[J]. Journal of Mine Automation, 2010, 36(2): 24-27.
  • Cited by

    Periodical cited type(33)

    1. 王剑,张善兵,樊君. 基于地质保障+5G的智能透明开采技术研究. 能源科技. 2025(01): 10-13 .
    2. 王双明,孙强,胡鑫,耿济世,侯恩科,王生全,周书涛,师庆民,袁士豪,陈凯,宋世杰. 煤炭开采地质体复合损害与减损保障. 煤田地质与勘探. 2025(01): 1-11 .
    3. 王国法,任怀伟,富佳兴. 煤矿智能化建设高质量发展难题与路径. 煤炭科学技术. 2025(01): 1-18 .
    4. 郑小磊. 基于改进OSELM算法的煤矿紧急救援通信系统研究. 现代电子技术. 2025(07): 16-22 .
    5. 程刚,陈杰,潘泽烨,魏溢凡,陈森森. 基于水传热和红外热成像的煤矸识别方法. 工矿自动化. 2024(01): 66-71+137 . 本站查看
    6. 郝炳勇,李萌,王时轮,宋艳萍. 煤矿一卡通管理平台设计与实现. 内蒙古煤炭经济. 2024(01): 37-39 .
    7. 李永安,赵军军. 基于元件原理解析的掘进机液压系统故障诊断. 煤矿机械. 2024(03): 159-162 .
    8. 杜潇,栗飞. 露天煤矿智能化建设关键技术研究与发展概述. 露天采矿技术. 2024(01): 70-73 .
    9. 齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测. 工矿自动化. 2024(02): 116-123 . 本站查看
    10. 秦泽宇,王伟涛,冯银辉,崔耀,王建兵,王帅. 综采机电设备智能化管控平台研究与应用. 中国煤炭. 2024(02): 77-83 .
    11. 崔聪,舒龙勇,梁银泉,杨建,刘正帅,朱南南. 瓦斯异常涌出预警系统架构设计与平台开发. 煤炭技术. 2024(03): 160-164 .
    12. 贺海涛,宋德军,赵海兴. 煤矿辅助运输防爆车辆电动化和数智化的应用研究. 煤炭工程. 2024(02): 219-224 .
    13. 袁泉. 综放工作面智能化升级改造与应用. 陕西煤炭. 2024(04): 91-94 .
    14. 张强,张吉雄,宗庭成,金子山,韩雨,杨康,张斌,傅瑞华. 超长柔性悬挂固体充填刮板输送机异常工况表征及自主调控方法. 煤炭学报. 2024(04): 2141-2151 .
    15. 于志强. 基于机器视觉的异物识别系统在输送机保护中的应用. 煤矿安全. 2024(05): 251-256 .
    16. 郑闯,李丹宁,冯银辉. 基于工艺驱动的采煤机智能截割调控. 工矿自动化. 2024(05): 23-27+150 . 本站查看
    17. 邹云兴,李标. 煤矿采煤机自动拖缆装置及控制方法研究. 工矿自动化. 2024(S1): 179-182 . 本站查看
    18. 贾文琪. 基于机器视觉的输送带纵向撕裂检测系统设计. 煤矿机械. 2024(09): 179-181 .
    19. 陈修奇,白永清,姜思远,张忠,盖春杰,王传真. 龙王沟选煤厂智能化控制实践与分析. 洁净煤技术. 2024(S1): 553-559 .
    20. 张立亚,李晨鑫,刘斌,杨志方. 基于子图像分割映射点云空间的机器人避障算法. 煤炭科学技术. 2024(S2): 368-374 .
    21. 李爽,贺超,鹿乘,许锟,薛广哲. 煤矿智能双重预防机制与智能安全管控平台研究. 煤炭科学技术. 2023(01): 464-473 .
    22. 马宏超,司垒,谭超. 融合传感数据和模型的采煤机VR系统研究. 煤矿机械. 2023(06): 200-204 .
    23. 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统. 煤炭科学技术. 2023(04): 175-184 .
    24. 金智新,闫志蕊,王宏伟,李正龙,史凌凯. 新一代信息技术赋能煤矿装备数智化转型升级. 工矿自动化. 2023(06): 19-31 . 本站查看
    25. 张境麟,姚钰鹏. 矿用设备组态化开发平台技术研究. 电脑与信息技术. 2023(04): 93-96+118 .
    26. 韩燕南. 基于UWB定位技术的无轨胶轮车路径偏离报警. 煤矿安全. 2023(09): 218-226 .
    27. 陈芳,李开富. 煤矿智能化建设实践分析. 内蒙古煤炭经济. 2023(15): 127-129 .
    28. 王冰纯. 矿用高分辨电法监测系统设计. 工矿自动化. 2023(10): 118-126 . 本站查看
    29. 郭焦锋,任世华. 如何保障新时代中国能源供给安全. 人民论坛·学术前沿. 2023(19): 46-55 .
    30. 郭连安,董广乐,蒋帅旗. 智能煤巷掘进工作面建设关键技术探讨. 能源与节能. 2023(11): 126-130 .
    31. 洪志鑫,蒋伟,贾文琪,韩朝晖. OOIP设计在煤矿控制系统的研究与应用. 煤矿机电. 2023(06): 38-42 .
    32. 郅富标,袁雪雅,梁娜娜. 智能化采煤装备的关键技术分析. 科技资讯. 2023(24): 119-121 .
    33. 周兆宇,富佳兴,张亮,程长荣. 基于G1-DEMATEL的煤矿智能化协同创新效果综合评价模型. 煤炭经济研究. 2023(11): 66-71 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (67) PDF downloads (14) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return