SUN Yan, FU Xiang, WANG Ranfeng, et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106
Citation: SUN Yan, FU Xiang, WANG Ranfeng, et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91. DOI: 10.13272/j.issn.1671-251x.2024070106

Intelligent prediction for face straightness based on sensor data and human operation information

More Information
  • Received Date: July 29, 2024
  • Revised Date: November 19, 2024
  • Available Online: October 28, 2024
  • Currently, the control of face straightness in fully mechanized mining faces combines sensor data such as advancing stroke with manual observations. However, an issue has been identified where sensor data and human operation information are not effectively utilized. To address this problem, an intelligent prediction method for face straightness that integrates sensor data and human operation information was proposed. The support advancing cylinder stroke data, support column pressure data and shearer position data were cleaned, and classified according to the normal advancing stroke control distance and the adjusted advancing stroke control distance. A face straightness analysis matrix was constructed, consisting of the normal advancing stroke control distance matrix and the accumulated advancing stroke control distance matrix. Through feature engineering, feature extraction was carried out on the straightness analysis matrix of the working face, and the feature matrix was generated as a sample, with the working condition type corresponding to the manual control distance to serve as sample labels. The experimental results show that the accuracy of the working face straightness prediction model built by random forest algorithm is the highest, which was 91.41%. A machine learning classification algorithm was employed to establish a prediction model for the face straightness of the current mining cycle. This prediction model was applied to the 2312 working faces at the Gaohe coal mine. The results indicated that during the 30-day period and 115 cutting cycles of the face straightness prediction, achieving an accuracy rate of 81.4%.

  • [1]
    王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology,2021,49(9):1-8.
    [2]
    王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74.
    [3]
    袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054

    YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054
    [4]
    王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022(5):1-9.

    WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022(5):1-9.
    [5]
    葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [6]
    高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [7]
    卢春贵,许春雨,宋建成,等. 基于RSSI的液压支架调直方法研究[J]. 煤矿机械,2021,42(6):193-195.

    LU Chungui,XU Chunyu,SONG Jiancheng,et al. Research on straightening method of hydraulic support based on RSSI[J]. Coal Mine Machinery,2021,42(6):193-195.
    [8]
    张树楠,曹现刚,崔亚仲,等. 基于多传感器的液压支架直线度测量方法研究[J]. 煤矿机械,2020,41(4):56-59.

    ZHANG Shunan,CAO Xiangang,CUI Yazhong,et al. Research on straightness measurement method of hydraulic support based on multi-sensor[J]. Coal Mine Machinery,2020,41(4):56-59.
    [9]
    杨学军,王然风,王怀法,等. 基于运动过程还原法的液压支架巡检机器人位姿检测[J]. 太原理工大学学报,2020,51(2):162-170.

    YANG Xuejun,WANG Ranfeng,WANG Huaifa,et al. Pose measurement of detection robot in hydraulic supports based on the motion process restoration method[J]. Journal of Taiyuan University of Technology,2020,51(2):162-170.
    [10]
    牛剑峰. 基于视频巡检的综采工作面无人化关键技术研究[J]. 煤炭科学技术,2019,47(10):141-146.

    NIU Jianfeng. Research on unmanned key technology of fully-mechanized mining face based on video inspection[J]. Coal Science and Technology,2019,47(10):141-146.
    [11]
    李森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169-174.

    LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169-174.
    [12]
    夏婷. 综采工作面刮板输送机直线度检测方法研究[D]. 徐州:中国矿业大学,2019.

    XIA Ting. Study on the measurement method of scraper conveyor straightness in fully mechanized mining face[D]. Xuzhou:China University of Mining and Technology,2019.
    [13]
    陈宇鸣. 基于SINS/UWB的刮板输送机高可靠性直线度检测技术研究[D]. 徐州:中国矿业大学,2021.

    CHEN Yuming. Research on high reliability straightness measurement technology of scraper conveyor based on SINS/UWB[D]. Xuzhou:China University of Mining and Technology,2021.
    [14]
    杨波,吴宁. 基于组合惯导的综采工作面刮板输送机直线度检测方法[J]. 煤矿安全,2022,53(6):148-152.

    YANG Bo,WU Ning. Combined inertial guidance based Straightness detection method of scraper conveyor in fully mechanized mining face based on integrated inertial navigation[J]. Safety in Coal Mines,2022,53(6):148-152.
    [15]
    杨曌. 基于视觉测量的综采工作面直线度测量技术研究[J]. 煤炭工程,2016,48(9):134-136.

    YANG Zhao. Research on measurement technology of working face straightness based on vision measurement[J]. Coal Engineering,2016,48(9):134-136.
    [16]
    刘鹏坤. 基于视觉测量的综采工作面直线度控制研究[D]. 北京:中国矿业大学(北京),2020.

    LIU Pengkun. Research on straightness control of fully mechanized coal face based on vision measurement[D]. Beijing:China University of Mining and Technology-Beijing,2020.
    [17]
    方新秋,陈宁宁,冯豪天,等. 刮板输送机直线度光纤精准感知与调直关键技术[J]. 采矿与安全工程学报,2023,40(5):1043-1056.

    FANG Xinqiu,CHEN Ningning,FENG Haotian,et al. Key technologies of optical fiber accurate perception and straightening of straightness of the scraper conveyor[J]. Journal of Mining & Safety Engineering,2023,40(5):1043-1056.
    [18]
    宁耀圣. 智能工作面刮板输送机直线度感知机理研究[D]. 徐州:中国矿业大学,2019.

    NING Yaosheng. Study on straightness perception mechanism of scraper conveyor in intelligent working face[D]. Xuzhou:China University of Mining and Technology,2019.
    [19]
    王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666.

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666.
    [20]
    葛世荣. 刮板输送机技术发展历程(三)——驱动与智能控制技术[J]. 中国煤炭,2024,50(4):1-12.

    GE Shirong. The development history of scraper conveyor technology (part three):intelligent drive and control technology[J]. China Coal,2024,50(4):1-12.
    [21]
    王雪松,王世博,王世佳,等. 刮板输送机直线度误差预测模型[J]. 中国矿业大学学报,2023,52(1):168-177.

    WANG Xuesong,WANG Shibo,WANG Shijia,et al. Prediction model of straightness error of scraper conveyor[J]. Journal of China University of Mining & Technology,2023,52(1):168-177.
    [22]
    王峰. 液压支架精确推移控制方案研究与应用[J]. 工矿自动化,2017,43(5):6-9.

    WANG Feng. Research of precise pushing control scheme for hydraulic support and its application[J]. Industry and Mine Automation,2017,43(5):6-9.
  • Related Articles

    [1]LI Dianze, XU Huajie, ZHANG Bo. Rock fracture type recognition based on deep feature learning of microseismic signals[J]. Journal of Mine Automation, 2025, 51(3): 156-164. DOI: 10.13272/j.issn.1671-251x.2024080043
    [2]LIU Pengnan, LI Long, ZHANG Zihao, ZHU Xingguang, CHENG Deqiang. Super resolution reconstruction of noisy images based on dense residual connected U-shaped networks[J]. Journal of Mine Automation, 2024, 50(2): 63-71. DOI: 10.13272/j.issn.1671-251x.2023080098
    [3]ZHANG Xuhui, YAN Jianxing, ZHANG Chao, WAN Jicheng, WANG Lixin, HU Chengjun, WANG Li, WANG Dong. Coal block abnormal behavior identification based on improved YOLOv5s + DeepSORT[J]. Journal of Mine Automation, 2022, 48(6): 77-86, 117. DOI: 10.13272/j.issn.1671-251x.17915
    [4]ZHANG Mingzhen. Underground pedestrian detection model based on Dense-YOLO network[J]. Journal of Mine Automation, 2022, 48(3): 86-90. DOI: 10.13272/j.issn.1671-251x.17861
    [5]YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
    [6]ZHU Chao, WANG Hao. Particle size change of solid residue and flammability analysis of gaseous residue of lignite coal dust explosio[J]. Journal of Mine Automation, 2021, 47(8): 69-76. DOI: 10.13272/j.issn.1671-251x.2021040040
    [7]LI Changwen, CHENG Zeyin, ZHANG Xiaogang, DING Hua. Fault diagnosis of shearer rocker gear based on deep residual network[J]. Journal of Mine Automation, 2021, 47(3): 71-78. DOI: 10.13272/j.issn.1671-251x.2020110043
    [8]DU Jingyi, HAO Le, WANG Yueyang, YANG Ruonan, WEN Jingyi. A detection method for large blocks in underground coal transportation[J]. Journal of Mine Automation, 2020, 46(5): 63-68. DOI: 10.13272/j.issn.1671-251x.2019090067
    [9]MA Hailong. Bearing residual life prediction based on principal component feature fusion and SVM[J]. Journal of Mine Automation, 2019, 45(8): 74-78. DOI: 10.13272/j.issn.1671-251x.2019010085
    [10]HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform[J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
  • Cited by

    Periodical cited type(9)

    1. 高翼飞,张晓航,畅明,葛帅帅,陈伟. 基于时空图卷积网络的瓦斯体积分数预警效果研究. 中国安全生产科学技术. 2024(01): 58-64 .
    2. 张玲,杨超宇. 基于注意力机制的ResNet-LSTM煤矿瓦斯浓度预测模型. 煤炭技术. 2024(08): 208-213 .
    3. 朱艺轩. 基于机器学习的成都市空气质量预测. 信息记录材料. 2024(07): 160-162 .
    4. 殷建华,戴冠正,丁宁,辛晓钢,张谦,杜荣华. 基于STL-Informer-BiLSTM-XGB模型的供热负荷预测. 科学技术与工程. 2024(21): 8942-8949 .
    5. 胡青松,郑硕,李世银,孙彦景. 基于改进TCN-TimeGAN的矿井瓦斯浓度智能预测方法. 煤炭科学技术. 2024(S2): 321-330 .
    6. 李洪晨,张志强. 全国国民图书阅读率会超过60%吗?——基于ARIMA模型的全国国民阅读调查预测研究. 图书情报工作. 2023(09): 72-80 .
    7. 金秀章,陈佳政,李阳峰. 基于ARIMA-OSELM的火电厂SCR入口NO_x浓度预测建模研究. 计量学报. 2023(09): 1458-1466 .
    8. 曹梅,杨超宇. 基于小波的CNN-LSTM-Attention瓦斯预测模型研究. 中国安全生产科学技术. 2023(09): 69-75 .
    9. 曹梅,杨超宇. 基于双向长短期记忆网络的煤矿瓦斯浓度预测. 绥化学院学报. 2023(12): 156-160 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (483) PDF downloads (22) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return