YANG Jiajia, ZHANG Chuanwei, ZHOU Libing, et al. Research on the targetless automatic calibration method for mining LiDAR and camera[J]. Journal of Mine Automation,2024,50(10):53-61, 89. DOI: 10.13272/j.issn.1671-251x.2024070056
Citation: YANG Jiajia, ZHANG Chuanwei, ZHOU Libing, et al. Research on the targetless automatic calibration method for mining LiDAR and camera[J]. Journal of Mine Automation,2024,50(10):53-61, 89. DOI: 10.13272/j.issn.1671-251x.2024070056

Research on the targetless automatic calibration method for mining LiDAR and camera

More Information
  • Received Date: July 15, 2024
  • Revised Date: October 07, 2024
  • Available Online: August 15, 2024
  • The realization of autonomous driving for mining vehicles relies on accurate environmental perception, and the combination of LiDAR and cameras can provide richer and more accurate environmental information. To ensure effective fusion of LiDAR and cameras, external parameter calibration is necessary. Currently, most mining intrinsically safe onboard LiDARs are 16-line LiDARs, which generate relatively sparse point clouds. To address this issue, this paper proposed a targetless automatic calibration method for mining LiDAR and camera. Multi-frame point cloud fusion was utilized to obtain fused frame point clouds, increasing point cloud density and enriching point cloud information. Then, effective targets such as vehicles and traffic signs in the scene were extracted using panoramic segmentation. By establishing a corresponding relationship between the centroids of 2D and 3D effective targets, a coarse calibration was completed. In the fine calibration process, the effective target point clouds were projected onto the segmentation mask after inverse distance transformation using the coarse-calibrated external parameters, constructing an objective function based on the matching degree of effective target panoramic information. The optimal external parameters were obtained by maximizing the objective function using a particle swarm algorithm. The effectiveness of the method was validated from three aspects: quantitative, qualitative, and ablation experiments. ① In the quantitative experiments, the translation error was 0.055 m, and the rotation error was 0.394°. Compared with the method based on semantic segmentation technology, the translation error was reduced by 43.88%, and the rotation error was reduced by 48.63%. ② The qualitative results showed that the projection effects in the garage and mining area scenes were highly consistent with the true values of the external parameters, demonstrating the stability of the method. ③ Ablation experiments indicated that multi-frame point cloud fusion and the weight coefficients of the objective function significantly improved calibration accuracy. When using fused frame point clouds as input compared to single-frame point clouds, the translation error was reduced by 50.89%, and the rotation error was reduced by 53.76%. Considering the weight coefficients, the translation error was reduced by 36.05%, and the rotation error was reduced by 37.87%.
  • [1]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [2]
    陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6-14,35.

    CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation,2022,48(6):6-14,35.
    [3]
    宋秦中,胡华亮. 基于CNN算法的井下无人驾驶无轨胶轮车避障方法[J]. 金属矿山,2023(10):168-174.

    SONG Qinzhong,HU Hualiang. Obstacle avoidance method for underground unmanned trackless rubber-tyred vehicle based on CNN algorithm[J]. Metal Mine,2023(10):168-174.
    [4]
    张宏伟,高亚男,王宇,等. 燃料受限条件下矿区无人驾驶卡车路径最优化策略研究[J]. 金属矿山,2024(8):140-145.

    ZHANG Hongwei,GAO Yanan,WANG Yu,et al. Study on route optimization strategy of unmanned truck in mining area under fuel constraint condition[J]. Metal Mine,2024(8):140-145.
    [5]
    胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128-140.

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation,2023,49(6):128-140.
    [6]
    ZHANG Qilong,PLESS R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,2004. DOI: 10.1109/IROS.2004.1389752.
    [7]
    ZHOU Lipu,DENG Zhidong. Extrinsic calibration of a camera and a lidar based on decoupling the rotation from the translation[C]. IEEE Intelligent Vehicles Symposium,Madrid,2012:642-648.
    [8]
    WANG Weimin,SAKURADA K,KAWAGUCHI N. Reflectance intensity assisted automatic and accurate extrinsic calibration of 3D LiDAR and panoramic camera using a printed chessboard[J]. MDPI AG,2017(8). DOI: 10.3390/RS9080851.
    [9]
    SIM S,SOCK J,KWAK K. Indirect correspondence-based robust extrinsic calibration of LiDAR and camera[J]. Sensors,2016,16(6). DOI: 10.3390/s16060933.
    [10]
    LIAO Qinghai,CHEN Zhenyong,LIU Yang,et al. Extrinsic calibration of lidar and camera with polygon[C]. IEEE International Conference on Robotics and Biomimetics,Kuala Lumpur,2018. DOI: 10.1109/ROBIO.2018.8665256.
    [11]
    徐孝彬,曹晨飞,张磊,等. 基于四面体特征的面阵激光雷达与相机标定方法[J]. 光子学报,2024 ,53(7):176-190.

    XU Xiaobin,CAO Chenfei,ZHANG Lei,et al. Planar array lidar and camera calibration method based on tetrahedral features[J]. Acta Photonica Sinica,2024,53(7):176-190.
    [12]
    谢婧婷,蔺小虎,王甫红,等. 一种点线面约束的激光雷达和相机标定方法[J]. 武汉大学学报(信息科学版),2021,46(12):1916-1923.

    XIE Jingting,LIN Xiaohu,WANG Fuhong,et al. Extrinsic calibration method for LiDAR and camera with joint point-line-plane constraints[J]. Geomatics and Information Science of Wuhan University,2021,46(12):1916-1923.
    [13]
    PANDEY G,MCBRIDE J R,SAVARESE S,et al. Automatic extrinsic calibration of vision and lidar by maximizing mutual information[J]. Journal of Field Robotics,2015,32(5):696-722. DOI: 10.1002/rob.21542
    [14]
    ZHAO Yipu,WANG Yuanfang,TSAI Y. 2D-image to 3D-range registration in urban environments via scene categorization and combination of similarity measurements[C]. IEEE International Conference on Robotics and Automation ,Stockholm,2016:1866-1872.
    [15]
    JIANG Peng,OSTEEN P,SARIPALLI S. SemCal:semantic LiDAR-camera calibration using neural mutual information estimator[C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,Karlsruhe,2021. DOI: 10.48550/arXiv.2109.10270.
    [16]
    MA Tao,LIU Zhizheng,YAN Guohang,et al. CRLF:automatic calibration and refinement based on line feature for LiDAR and camera in road scenes[EB/OL]. (2021-03-08)[2024-06-22]. https://arxiv.org/abs/2103.04558v1.
    [17]
    ZHU Yufeng,LI Chenghui,ZHANG Yubo. Online camera-LiDAR calibration with sensor semantic information[C]. IEEE International Conference on Robotics and Automation,Paris,2020. DOI: 10.1109/ICRA40945.2020.9196627.
    [18]
    ISHIKAWA R,OISHI T,IKEUCHI K. LiDAR and camera calibration using motions estimated by sensor fusion odometry[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:7342-7349.
    [19]
    WANG Li,XIAO Zhipeng,ZHAO Dawei,et al. Automatic extrinsic calibration of monocular camera and LIDAR in natural scenes[C]. IEEE International Conference on Information and Automation,Wuyishan,2018:997-1002.
    [20]
    SCHNEIDER N,PIEWAK F,STILLER C,et al. RegNet:multimodal sensor registration using deep neural networks[C]. IEEE Intelligent Vehicles Symposium,Los Angeles,2017:1803-1810.
    [21]
    IYER G,RAM R K,MURTHY J K,et al. CalibNet:geometrically supervised extrinsic calibration using 3D spatial transformer networks[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:1110-1117.
    [22]
    LYU Xudong,WANG Shuo,YE Dong. CFNet:lidar-camera registration using calibration flow network[J]. Sensors,2021. DOI: 10.48550/arXiv.2104.11907.
    [23]
    WANG Weimin,NOBUHARA S,NAKAMURA R,et al. SOIC:semantic online initialization and calibration for LiDAR and camera[EB/OL]. (2023-03-09)[2024-06-22]. https://arxiv.org/abs/2003.04260v1.
    [24]
    JAIN J,LI Jiachen,CHIU M,et al. OneFormer:one transformer to rule universal image segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:2989-2998.
    [25]
    XIAO Zeqi,ZHANG Wenwei,WANG Tai,et al. Position-guided point cloud panoptic segmentation transformer[EB/OL]. (2023-03-23)[2024-06-22]. https://arxiv.org/abs/2303.13509v1.
  • Related Articles

    [1]MA Zheng, YANG Dashan, ZHANG Tianxiang. Multi-personnel underground trajectory prediction method based on Social Transformer[J]. Journal of Mine Automation, 2024, 50(5): 67-74. DOI: 10.13272/j.issn.1671-251x.2023110084
    [2]WANG Shubin, WANG Xu, YAN Shiping, WANG Ke. Transformer based time series prediction method for mine internal caused fire[J]. Journal of Mine Automation, 2024, 50(3): 65-70, 91. DOI: 10.13272/j.issn.1671-251x.2023100084
    [3]LI Zexi. Ensemble learning mine pressure prediction method based on variable time series shift Transformer-LSTM[J]. Journal of Mine Automation, 2023, 49(7): 92-98. DOI: 10.13272/j.issn.1671-251x.18142
    [4]LI Yongqin, YU Zaichuan. Exploration and practice of intelligent transformation in Jinjie Coal Mine[J]. Journal of Mine Automation, 2022, 48(S1): 33-35.
    [5]ZHANG Guilin, WANG Yiying, LIU Jiangong, CHEN Longfei, LIU Wenzhuang. Mine inverter based on isolation and transformation of power electronic transformer[J]. Journal of Mine Automation, 2021, 47(10): 70-76. DOI: 10.13272/j.issn.1671-251x.2020110059
    [6]TAO Fengyuan, ZHANG Dong, DONG Xinsheng, WANG Shirong. Analysis of influence factors of polarization spectrum method on state detection of transformer oil-paper insulatio[J]. Journal of Mine Automation, 2014, 40(10): 33-36. DOI: 10.13272/j.issn.1671-251x.2014.10.010
    [7]LIU Yafeng, NIU Yuguang, ZHANG Jianyong. Signal processing method for dynamic weighing based on wavelet transform[J]. Journal of Mine Automation, 2014, 40(7): 13-16. DOI: 10.13272/j.issn.1671-251x.2014.07.004
    [8]LIU Jie, BAI Hong-feng. Application of Integrated Automation Technology for Transformer Substation in Mine[J]. Journal of Mine Automation, 2003, 29(6): 36-38.
    [9]WU Yan-hua, MENG Jiao-ru. The Operating Disturbances Analysis of the Coal Transformer[J]. Journal of Mine Automation, 2001, 27(3): 40-42.
    [10]ZOU Yi-wen, LI Jin-he. Application of Circuit Transformer Bank in Small-scale Heat Power Plant in Coal Mine and Its Protection Distributio[J]. Journal of Mine Automation, 2001, 27(1): 18-20.
  • Cited by

    Periodical cited type(16)

    1. 宋庆军,焦守悦,姜海燕,宋庆辉,郝文超. 基于改进EfficientNet的煤矸音频分类方法. 工矿自动化. 2025(01): 138-144 . 本站查看
    2. 燕建华. 周期性冲击波形匹配下选煤破碎机滚动轴承局部缺陷检测. 自动化与仪器仪表. 2025(02): 37-41 .
    3. 上官星驰,张晓良,刘朝,石会,王嘉宇. 基于改进特征提取算法及胶囊网络的设备故障诊断研究. 工矿自动化. 2024(S1): 146-150 . 本站查看
    4. 范忠明. 基于神经网络图像识别技术的放顶煤煤矸自动识别方法. 自动化技术与应用. 2024(10): 39-42 .
    5. 王志峰,王家臣,李良晖,安博超. 基于DeepLab v3+的综放工作面含矸率预测研究. 工矿自动化. 2024(10): 90-96 . 本站查看
    6. 李立宝,袁永,秦正寒,李波,闫政天,李勇. 图像特征与振动频谱多源融合驱动的煤矸识别技术研究. 工矿自动化. 2024(11): 43-51 . 本站查看
    7. 周正南,刘美,吴斌鑫,莫常春,高兴泉,张斐. 基于改进的CEEMDAN与关联维数的石化轴承故障特征提取. 机床与液压. 2023(05): 212-217 .
    8. 司垒,李嘉豪,邢峰,魏东,戴剑博,王忠宾. 不同煤矸混合物的微波传播特性试验研究. 煤炭科学技术. 2023(05): 219-231 .
    9. 石港,雷志鹏. 基于改进深度森林的采煤机拖拽电缆挤压力识别方法. 工矿自动化. 2023(10): 8-16+51 . 本站查看
    10. 史翔予,司垒,王忠宾,魏东,顾进恒. 基于改进双向峰-谷搜索算法的煤矸模型电磁波正演模拟. 工矿自动化. 2023(10): 87-95 . 本站查看
    11. 李春锋,马星河,刘广朋. 基于改进VMD的矿用电缆局放信号降噪方法. 能源与环保. 2023(12): 268-274 .
    12. 贺海涛,王佳豪,张海峰,荣耀,崔耀. 基于U-Net的放煤状态控制关键技术研究. 煤炭科学技术. 2022(S2): 237-243 .
    13. 高丰,朱少成,罗石. 基于改进的经验模态分解的后视镜驱动器故障诊断方法. 河南科技大学学报(自然科学版). 2021(06): 39-45+6-7 .
    14. 刘丹丹. 基于EMD的GNSS时间序列异常值探测算法. 地球物理学进展. 2021(05): 1865-1873 .
    15. 丁震,常博深. 面向煤矸识别的近红外反射光谱数据预处理方法. 工矿自动化. 2021(12): 93-97 . 本站查看
    16. 田志飞,洪盛勇. 火力发电厂煤流状态实时监测方法的研究及应用. 电力学报. 2021(06): 564-572 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (775) PDF downloads (40) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return