Citation: | DAI Bo, WANG Yafei, LI Ruoyao, et al. Method for identifying passable areas in mines based on spatiotemporal continuous compensation[J]. Journal of Mine Automation,2024,50(10):62-67, 79. doi: 10.13272/j.issn.1671-251x.2024050067 |
[1] |
李鑫,余心芷,邱倩茹,等. 无人驾驶矿卡线扫描传感器布设高度优化[J]. 金属矿山,2019,(12):163-167.
LI Xin,YU Xinzhi,QIU Qianru,et al. Height layout optimization of line scan sensors installed on unmanned mining dump truck[J]. Metal Mine,2019,(12):163-167.
|
[2] |
ZHOU Zhisong,WANG Yafei,ZHOU Guofeng,et al. A twisted Gaussian risk model considering target vehicle longitudinal-lateral motion states for host vehicle trajectory planning[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(12):13685-13697. doi: 10.1109/TITS.2023.3298110
|
[3] |
LIU Xulei,WANG Yafei,JIANG Kun,et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems,2022,23(10):19076-19087. doi: 10.1109/TITS.2022.3160630
|
[4] |
张庚,杨超,王伟达,等. 基于激光雷达的自动驾驶同步定位与建图方法综述[J]. 汽车工程学报,2024,14(1):1-13.
ZHANG Geng,YANG Chao,WANG Weida,et al. A review of LiDAR-based simultaneous localization and mapping methods for autonomous driving[J]. Chinese Journal of Automotive Engineering,2024,14(1):1-13.
|
[5] |
DOUILLARD B,UNDERWOOD J,KUNTZ N,et al. On the segmentation of 3D LIDAR point clouds[C]. IEEE International Conference on Robotics and Automation,Shanghai,2011. DOI: 10.1109/ICRA.2011.5979818.
|
[6] |
CHEN Tongtong,DAI Bin,WANG Ruili,et al. Gaussian-process-based real-time ground segmentation for autonomous land vehicles[J]. Journal of Intelligent & Robotic Systems,2014,76(3):563-582.
|
[7] |
TSE R,AHMED N,CAMPBELL M. Unified mixture-model based terrain estimation with Markov Random Fields[C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,Hamburg,2012. DOI: 10.1109/MFI.2012.6343027.
|
[8] |
RUMMELHARD L,PAIGWAR A,NEGRE A,et al. Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field[C]. IEEE Intelligent Vehicles Symposium ,Los Angeles,2017. DOI: 10.1109/IVS.2017.7995861.
|
[9] |
MILIOTO A,VIZZO I,BEHLEY J,et al. RangeNet ++:fast and accurate LiDAR semantic segmentation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Macau,2019. DOI: 10.1109/IROS40897.2019.8967762.
|
[10] |
THRUN S,MONTEMERLO M,DAHLKAMP H,et al. Stanley:the robot that won the DARPA grand challenge[J]. Journal of Field Robotics,2006,23(9):661-692. doi: 10.1002/rob.20147
|
[11] |
ASVADI A,PEIXOTO P,NUNES U. Detection and tracking of moving objects using 2.5 D motion grids[C]. IEEE 18th International Conference on Intelligent Transportation Systems,Gran Canaria,2015. DOI: 10.1109/ITSC.2015.133.
|
[12] |
HIMMELSBACH M,HUNDELSHAUSEN F V,WUENSCHE H J. Fast segmentation of 3D point clouds for ground vehicles[C]. IEEE Intelligent Vehicles Symposium,La Jolla,2010. DOI: 10.1109/IVS.2010.5548059.
|
[13] |
STEINHAUSER D,RUEPP O,BURSCHKA D. Motion segmentation and scene classification from 3D LIDAR data[C]. IEEE Intelligent Vehicles Symposium,Eindhoven,2008. DOI: 10.1109/IVS.2008.4621281.
|
[14] |
ZERMAS D,IZZAT I,PAPANIKOLOPOULOS N. Fast segmentation of 3D point clouds:a paradigm on LiDAR data for autonomous vehicle applications[C]. IEEE International Conference on Robotics and Automation,Singapore,2017. DOI: 10.1109/ICRA.2017.7989591.
|
[15] |
NARKSRI P,TAKEUCHI E,NINOMIYA Y,et al. A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles[C]. 21st International Conference on Intelligent Transportation Systems,Maui,2018. DOI: 10.1109/ITSC.2018.8569534.
|
[16] |
CHENG Jie,HE Dong,LEE C. A simple ground segmentation method for LiDAR 3D point clouds[C]. 2nd International Conference on Advances in Computer Technology,Information Science and Communications,Suzhou,2020. DOI: 10.1109/CTISC49998.2020.00034.
|
[17] |
LIM H,OH M,MYUNG H. Patchwork:concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor[J]. IEEE Robotics and Automation Letters,2021,6(4):6458-6465. doi: 10.1109/LRA.2021.3093009
|
[18] |
LEE S,LIM H,MYUNG H. Patchwork++:fast and robust ground segmentation solving partial under-segmentation using 3D point cloud[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Kyoto,2022. DOI: 10.1109/IR0547612.2022.9981561.
|
[19] |
FENG Chen,TAGUCHI Y,KAMAT V R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]. IEEE International Conference on Robotics and Automation,Hong Kong,2014. DOI: 10.1109/ICRA.2014.6907776.
|
[20] |
BI Fangming,WANG Weikui,CHEN Long. DBSCAN:Density-based spatial clustering of applications with noise[J]. Journal of Nanjing University(Natural Sciences),2012,48(4):491-498.
|
[21] |
XU Wei,ZHANG Fu. FAST-LIO:a fast,robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters,2021,6(2):3317-3324. doi: 10.1109/LRA.2021.3064227
|
[22] |
SAARINEN J,ANDREASSON H,STOYANOV T,et al. Normal distributions transform occupancy maps:application to large-scale online 3D mapping[C]. IEEE International Conference on Robotics and Automation,Karlsruhe,2013. DOI: 10.1109/ICRA.2013.6630878.
|
[23] |
FISCHLER M A,BOLLES R C. Random sample consensus[J]. Communications of the ACM,1981,24(6):381-395. doi: 10.1145/358669.358692
|