LI Shiguang, XUE Han, LI Zhen, GAO Zhengzhong, LI Ying. Fault diagnosis of mine-used transformer based on optimized fuzzy Petri net[J]. Journal of Mine Automation, 2017, 43(5): 54-57. DOI: 10.13272/j.issn.1671-251x.2017.05.013
Citation: LI Shiguang, XUE Han, LI Zhen, GAO Zhengzhong, LI Ying. Fault diagnosis of mine-used transformer based on optimized fuzzy Petri net[J]. Journal of Mine Automation, 2017, 43(5): 54-57. DOI: 10.13272/j.issn.1671-251x.2017.05.013

Fault diagnosis of mine-used transformer based on optimized fuzzy Petri net

More Information
  • For oil-immer transformer used in places with coal dust and no explosion hazard,an improved fault diagnosis model of mine-used transformer based on fuzzy Petri net was proposed. Fuzzy generation rule was used to establish fault diagnosis model according to relationship between fault symptom and the fault. Self-learning and adaptive ability of Elman network algorithm are used to optimize initial parameters of the model, and the settings of initial parameters of the fuzzy Petri net are more reasonable. Matlab simulation results show that fault diagnosis accuracy of the optimized model and unoptimized model is 87.88% and 75.76% respectively, which verifies effectiveness of the optimized model.
  • Related Articles

    [1]WU Yulun, XIAO Tannan, CHEN Ying. Fault diagnosis method for substations based on fault enumeration tree to generate fuzzy Petri net[J]. Journal of Mine Automation, 2025, 51(1): 85-94. DOI: 10.13272/j.issn.1671-251x.18233
    [2]CHENG Lei, LI Zhengjian, SHI Haorong, WANG Xin. A bottom air temperature prediction model based on PSO-Elman neural network[J]. Journal of Mine Automation, 2024, 50(1): 131-137. DOI: 10.13272/j.issn.1671-251x.2023090062
    [3]FAN Zhanwen, LIU Bo. Research on cooperative control of fully mechanized mining equipment based on improved Elman neural network[J]. Journal of Mine Automation, 2021, 47(S2): 26-28.
    [4]ZHANG Mei, XU Tao, SUN Huihuang, MENG Xiangyu. Fault diagnosis of mine hoist based on fuzzy fault tree and Bayesian network[J]. Journal of Mine Automation, 2020, 46(11): 1-5. DOI: 10.13272/j.issn.1671-251x.17562
    [5]MENG Xiangang, YU Xiao, LI Xiaojing. Fault diagnosis of mine hoist deceleration system based on fuzzy Petri net[J]. Journal of Mine Automation, 2019, 45(6): 91-95. DOI: 10.13272/j.issn.1671-251x.2018120059
    [6]SUN Huiying, LIN Zhongpeng, HUANG Can, CHEN Peng. Fault diagnosis of mine ventilator based on improved BP neural network[J]. Journal of Mine Automation, 2017, 43(4): 37-41. DOI: 10.13272/j.issn.1671-251x.2017.04.009
    [7]SUN Qidong, ZHANG Kairu, SONG Xiangmin, LI Liming, MA Hui, WANG Yi. Research of single-phase fault line selection of power distribution network based on fifth harmonics energy and LM-Elman neural network[J]. Journal of Mine Automation, 2016, 42(8): 61-64. DOI: 10.13272/j.issn.1671-251x.2016.08.015
    [8]LIU Jingyan, LI Yudong, GUO Shunjing. Gear box fault diagnosis based on Elman neural networ[J]. Journal of Mine Automation, 2016, 42(8): 47-51. DOI: 10.13272/j.issn.1671-251x.2016.08.012
    [9]GONG Maofa, LIU Yanni, WANG Laihe, ZHANG Chao, HOU Linyua. Fault diagnosis of mine hoist based on optimizing fuzzy Petri networks[J]. Journal of Mine Automation, 2016, 42(7): 50-53. DOI: 10.13272/j.issn.1671-251x.2016.07.012
    [10]GAO Zhengzhong, GONG Qunying, ZHAO Lina, XU Huanqi, XIAO Jiayi. Fault diagnosis of underground water pump based on fuzzy Petri net and condition monitoring[J]. Journal of Mine Automation, 2016, 42(5): 28-31. DOI: 10.13272/j.issn.1671-251x.2016.05.007
  • Cited by

    Periodical cited type(8)

    1. 高泽梅. 基于油色谱数据的变压器故障监控策略分析. 集成电路应用. 2023(12): 280-281 .
    2. 闫丽梅,徐伟丽. 基于Petri网的电力系统故障诊断综述. 广东电力. 2022(04): 1-10 .
    3. 雍明超,王磊,祁招,庞杰锋,姜睿智,孟乐,王胜辉,邵向阳. 干式变压器智能系统构建策略及关键技术研究. 电气应用. 2022(11): 6-15 .
    4. 颜明. 基于改进萤火虫算法的模糊Petri网学习能力研究. 中国传媒大学学报(自然科学版). 2021(04): 47-54 .
    5. 张凡博,王波. 多CPU结构微机变压器保护装置的设计与实现. 电力电子技术. 2021(12): 122-126 .
    6. 徐辉,袁庆霓. 矿井中电力系统变压器故障诊断仿真. 计算机仿真. 2019(01): 437-440+479 .
    7. 陈尔奎,韩清春,周栾. 基于布谷鸟算法和BP神经网络的矿用变压器故障诊断. 煤炭技术. 2018(06): 223-224 .
    8. 解争龙. 基于自编码网络的船载变压器故障诊断研究. 舰船科学技术. 2018(18): 112-114 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (41) PDF downloads (8) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return