Citation: | WANG Junli, LI Jiayue, LI Bingtian, et al. Deep learning-based face detection method under low illumination conditions in coal mines[J]. Journal of Mine Automation,2023,49(11):145-150. DOI: 10.13272/j.issn.1671-251x.2023080103 |
[1] |
钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13. DOI: 10.13225/j.cnki.jccs.2017.4400
QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13. DOI: 10.13225/j.cnki.jccs.2017.4400
|
[2] |
GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
|
[3] |
REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031
|
[4] |
郑道能. 一种改进的tiny YOLO v3煤矸石快速识别模型[J]. 工矿自动化,2023,49(4):113-119.
ZHENG Daoneng. An improved tiny YOLO v3 rapid recognition model for coal-gangue[J]. Journal of Mine Automation,2023,49(4):113-119.
|
[5] |
BERG A C,FU Chengyang,SZEGEDY C,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Amsterdam,2016:21-37.
|
[6] |
LI Jian,WANG Yabiao,WANG Changan,et al. DSFD:dual shot face detector[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Los Angeles,2019:5060-5069.
|
[7] |
TANG Xu,DU D K,HE Zeqiang,et al. PyramidBox:a context-assisted single shot face detector[C]. European Conference on Computer Vision,Munich,2018:797-813.
|
[8] |
ZHANG Kaipeng,ZHANG Zhanpeng,LI Zhifeng,et al. Joint face detection and alignment using multi-task cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. DOI: 10.1109/LSP.2016.2603342
|
[9] |
DENG Jiankang,GUO Jia,VERVERAS E,et al. Retinaface:single-shot multi-level face localisation in the wild[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:5203-5212.
|
[10] |
刘淇缘. 单阶段复杂人脸检测方法研究[D]. 北京:中国人民公安大学,2021.
LIU Qiyuan. Research on one-stage complex face detection methods[D]. Beijing:People's Public Security University of China,2021.
|
[11] |
YANG Shuo,LUO Ping,LOY C C,et al. Wider face:a face detection benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:5525-5533.
|
[12] |
万俊霞,林珊玲,梅婷,等. 基于图像分割和动态直方图均衡的电润湿显示器图像增强算法[J]. 光子学报,2022,51(2):240-250.
WAN Junxia,LIN Shanling,MEI Ting,et al. Image enhancement algorithm of electrowetting display based on image segmentation and dynamic histogram equalization[J]. Acta Photonica Sinica,2022,51(2):240-250.
|
[13] |
REN Xutong,YANG Wenhan,CHENG Wenhuang,et al. LR3M:robust low-light enhancement via low-rank regularized Retinex model[J]. IEEE Transactions on Image Processing,2020,29:5862-5876. DOI: 10.1109/TIP.2020.2984098
|
[14] |
WANG Lei,FU Guangtao,JIANG Zhuqiang,et al. Low-light image enhancement with attention and multi-level feature fusion[C]. IEEE International Conference on Multimedia & Expo Workshops,Shanghai,2019:276-281.
|
[15] |
LI Jinjiang,FENG Xiaomei,HUA Zhen. Low-light image enhancement via progressive-recursive network[J]. IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4227-4240. DOI: 10.1109/TCSVT.2021.3049940
|
[16] |
GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1780-1789.
|
[17] |
LEE H,SOHN K,MIN Dongbo. Unsupervised low-light image enhancement using bright channel prior[J]. IEEE Signal Processing Letters,2020,27:251-255. DOI: 10.1109/LSP.2020.2965824
|
[18] |
JIANG Yifan,GONG Xinyu,LIU Ding,et al. EnlightenGAN:deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing,2021,30:2340-2349. DOI: 10.1109/TIP.2021.3051462
|
[19] |
刘丹英,刘晓燕. 基于U−Net卷积神经网络的多尺度遥感图像分割算法[J]. 现代电子技术,2023,46(21):44-47. DOI: 10.16652/j.issn.1004-373x.2023.21.009
LIU Danying,LIU Xiaoyan. Multi-scale remote sensing image segmentation algorithm based on U-net convolutional neural network[J]. Modern Electronics Technique,2023,46(21):44-47. DOI: 10.16652/j.issn.1004-373x.2023.21.009
|
[20] |
王照乾,孔韦韦,滕金保,等. DenseNet生成对抗网络低照度图像增强方法[J]. 计算机工程与应用,2022,58(8):214-220.
WANG Zhaoqian,KONG Weiwei,TENG Jinbao,et al. Low illumination image enhancement method based on DenseNet GAN[J]. Computer Engineering and Applications,2022,58(8):214-220.
|
[21] |
DONG Xuan,WANG Guan,PANG Yi,et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo,Barcelona,2011:1-6.
|
[22] |
MA Long,MA Tengyu,LIU Risheng,et al. Toward fast,flexible,and robust low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:5637-5646.
|
[1] | WANG Yiwei, LI Xiaoyu, WENG Zhi, BAI Fengshan. Low-light image enhancement method for underground mines based on an improved Zero-DCE model[J]. Journal of Mine Automation, 2025, 51(2): 57-64, 99. DOI: 10.13272/j.issn.1671-251x.2024110072 |
[2] | WANG Taiji. A method for estimating the step size of underground personnel based on generative adversarial networks[J]. Journal of Mine Automation, 2024, 50(6): 103-111. DOI: 10.13272/j.issn.1671-251x.2024020039 |
[3] | CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094 |
[4] | LI Gang, ZHANG Yabing, YANG Qinghe, ZOU Junpeng, CAI Tian, LIU Hang, ZHAO Yiming. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation, 2023, 49(11): 84-91. DOI: 10.13272/j.issn.1671-251x.2023080093 |
[5] | ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation, 2023, 49(11): 53-59. DOI: 10.13272/j.issn.1671-251x.2023080046 |
[6] | KONG Erwei, ZHANG Yabang, LI Jiayue, WANG Manli. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation, 2023, 49(4): 62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054 |
[7] | TANG Shoufeng, SHI Ke, TONG Guangming, SHI Jingcan, LI Huashuo. A mine low illumination image enhancement algorithm[J]. Journal of Mine Automation, 2021, 47(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2021060052 |
[8] | WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498 |
[9] | WANG Xing, BAI Shangwang, PAN Lihu, CHEN Lichao. A mine image enhancement algorithm[J]. Journal of Mine Automation, 2017, 43(3): 48-52. DOI: 10.13272/j.issn.1671-251x.2017.03.011 |
[10] | YANG Yong, YUE Jianhua, LI Yuliang, WANG Qingfei. A dynamic image enhancement method for mine[J]. Journal of Mine Automation, 2015, 41(11): 48-52. DOI: 10.13272/j.issn.1671-251x.2015.11.012 |
1. |
鞠慕涵,刘万科,胡捷,谷宇鹏. 改进D~*算法的未知场景机器人运动规划. 导航定位学报. 2024(03): 145-153 .
![]() | |
2. |
陈思成,纪玉杰,路达. 采样机器人路径规划研究. 内燃机与配件. 2022(22): 96-98 .
![]() | |
3. |
郝天轩,赵立桢. 跨平台矿井应急救援路径寻优方案研究. 工矿自动化. 2020(05): 108-112 .
![]() | |
4. |
熊雄. 多出口建筑疏散最优路径分层搜索算法仿真. 计算机仿真. 2020(08): 419-423 .
![]() | |
5. |
王飞,江明. 基于一种改进的蚁群算法的移动机器人三维路径规划研究. 安徽工程大学学报. 2019(03): 43-48 .
![]() | |
6. |
张苏英,赵国花,郭宝樑,于佳兴,刘慧贤. 基于改进的蚁群算法的移动机器人路径规划. 河北工业科技. 2019(06): 390-395 .
![]() | |
7. |
沈显庆,孙启智. BSO算法在移动机器人三维路径规划中的应用. 黑龙江科技大学学报. 2019(06): 747-751 .
![]() | |
8. |
龚星宇,常心坦,贾澎涛,罗碧波. 基于蚁群算法的井下救援路径优化方法. 工矿自动化. 2018(03): 76-81 .
![]() |