WANG Junli, LI Jiayue, LI Bingtian, et al. Deep learning-based face detection method under low illumination conditions in coal mines[J]. Journal of Mine Automation,2023,49(11):145-150. DOI: 10.13272/j.issn.1671-251x.2023080103
Citation: WANG Junli, LI Jiayue, LI Bingtian, et al. Deep learning-based face detection method under low illumination conditions in coal mines[J]. Journal of Mine Automation,2023,49(11):145-150. DOI: 10.13272/j.issn.1671-251x.2023080103

Deep learning-based face detection method under low illumination conditions in coal mines

More Information
  • Received Date: August 27, 2023
  • Revised Date: November 20, 2023
  • Available Online: November 26, 2023
  • The low contrast and blurry facial features of facial images collected by the monitoring system are caused by dim illumination and interference from artificial illumination sources in coal mines. Traditional facial detection algorithms may cause false or missed detections when applied in coal mines. In order to solve the above problems, a deep learning-based face detection method under low illumination conditions in coal mines is proposed. A generative adversarial network (GAN) based on unsupervised learning is used to enhance the contrast of low illumination images in coal mines. A self-adjusting attention guided U-Net is used as the generator, and dual discriminators are used to guide global and local information. The self-feature retention loss function is used to guide the training process and maintain the texture structure of the face in the image and strengthen facial features. It can avoid phenomena such as exposure and loss of facial detail information, and obtain clearer facial images. The RetinaFace face detection framework is used to detect the enhanced facial features. It uses a feature pyramid structure and a single stage detection mode to detect facial images. It improves the capability to detect small-scale faces without increasing computational complexity. The experimental results on the public low illumination face dataset DARK FACE and the self built coal mine underground face dataset show that this method improves image contrast, clearly restores facial features in the image, and performs well in accuracy, recall, and average accuracy, effectively improving the accuracy of coal mine underground face detection.
  • [1]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13. DOI: 10.13225/j.cnki.jccs.2017.4400

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13. DOI: 10.13225/j.cnki.jccs.2017.4400
    [2]
    GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
    [3]
    REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031
    [4]
    郑道能. 一种改进的tiny YOLO v3煤矸石快速识别模型[J]. 工矿自动化,2023,49(4):113-119.

    ZHENG Daoneng. An improved tiny YOLO v3 rapid recognition model for coal-gangue[J]. Journal of Mine Automation,2023,49(4):113-119.
    [5]
    BERG A C,FU Chengyang,SZEGEDY C,et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision,Amsterdam,2016:21-37.
    [6]
    LI Jian,WANG Yabiao,WANG Changan,et al. DSFD:dual shot face detector[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Los Angeles,2019:5060-5069.
    [7]
    TANG Xu,DU D K,HE Zeqiang,et al. PyramidBox:a context-assisted single shot face detector[C]. European Conference on Computer Vision,Munich,2018:797-813.
    [8]
    ZHANG Kaipeng,ZHANG Zhanpeng,LI Zhifeng,et al. Joint face detection and alignment using multi-task cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. DOI: 10.1109/LSP.2016.2603342
    [9]
    DENG Jiankang,GUO Jia,VERVERAS E,et al. Retinaface:single-shot multi-level face localisation in the wild[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:5203-5212.
    [10]
    刘淇缘. 单阶段复杂人脸检测方法研究[D]. 北京:中国人民公安大学,2021.

    LIU Qiyuan. Research on one-stage complex face detection methods[D]. Beijing:People's Public Security University of China,2021.
    [11]
    YANG Shuo,LUO Ping,LOY C C,et al. Wider face:a face detection benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:5525-5533.
    [12]
    万俊霞,林珊玲,梅婷,等. 基于图像分割和动态直方图均衡的电润湿显示器图像增强算法[J]. 光子学报,2022,51(2):240-250.

    WAN Junxia,LIN Shanling,MEI Ting,et al. Image enhancement algorithm of electrowetting display based on image segmentation and dynamic histogram equalization[J]. Acta Photonica Sinica,2022,51(2):240-250.
    [13]
    REN Xutong,YANG Wenhan,CHENG Wenhuang,et al. LR3M:robust low-light enhancement via low-rank regularized Retinex model[J]. IEEE Transactions on Image Processing,2020,29:5862-5876. DOI: 10.1109/TIP.2020.2984098
    [14]
    WANG Lei,FU Guangtao,JIANG Zhuqiang,et al. Low-light image enhancement with attention and multi-level feature fusion[C]. IEEE International Conference on Multimedia & Expo Workshops,Shanghai,2019:276-281.
    [15]
    LI Jinjiang,FENG Xiaomei,HUA Zhen. Low-light image enhancement via progressive-recursive network[J]. IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4227-4240. DOI: 10.1109/TCSVT.2021.3049940
    [16]
    GUO Chunle,LI Chongyi,GUO Jichang,et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1780-1789.
    [17]
    LEE H,SOHN K,MIN Dongbo. Unsupervised low-light image enhancement using bright channel prior[J]. IEEE Signal Processing Letters,2020,27:251-255. DOI: 10.1109/LSP.2020.2965824
    [18]
    JIANG Yifan,GONG Xinyu,LIU Ding,et al. EnlightenGAN:deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing,2021,30:2340-2349. DOI: 10.1109/TIP.2021.3051462
    [19]
    刘丹英,刘晓燕. 基于U−Net卷积神经网络的多尺度遥感图像分割算法[J]. 现代电子技术,2023,46(21):44-47. DOI: 10.16652/j.issn.1004-373x.2023.21.009

    LIU Danying,LIU Xiaoyan. Multi-scale remote sensing image segmentation algorithm based on U-net convolutional neural network[J]. Modern Electronics Technique,2023,46(21):44-47. DOI: 10.16652/j.issn.1004-373x.2023.21.009
    [20]
    王照乾,孔韦韦,滕金保,等. DenseNet生成对抗网络低照度图像增强方法[J]. 计算机工程与应用,2022,58(8):214-220.

    WANG Zhaoqian,KONG Weiwei,TENG Jinbao,et al. Low illumination image enhancement method based on DenseNet GAN[J]. Computer Engineering and Applications,2022,58(8):214-220.
    [21]
    DONG Xuan,WANG Guan,PANG Yi,et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo,Barcelona,2011:1-6.
    [22]
    MA Long,MA Tengyu,LIU Risheng,et al. Toward fast,flexible,and robust low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:5637-5646.
  • Related Articles

    [1]WANG Yiwei, LI Xiaoyu, WENG Zhi, BAI Fengshan. Low-light image enhancement method for underground mines based on an improved Zero-DCE model[J]. Journal of Mine Automation, 2025, 51(2): 57-64, 99. DOI: 10.13272/j.issn.1671-251x.2024110072
    [2]WANG Taiji. A method for estimating the step size of underground personnel based on generative adversarial networks[J]. Journal of Mine Automation, 2024, 50(6): 103-111. DOI: 10.13272/j.issn.1671-251x.2024020039
    [3]CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094
    [4]LI Gang, ZHANG Yabing, YANG Qinghe, ZOU Junpeng, CAI Tian, LIU Hang, ZHAO Yiming. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation, 2023, 49(11): 84-91. DOI: 10.13272/j.issn.1671-251x.2023080093
    [5]ZHANG Liya. Foreign object detection method for belt conveyor based on generative adversarial nets[J]. Journal of Mine Automation, 2023, 49(11): 53-59. DOI: 10.13272/j.issn.1671-251x.2023080046
    [6]KONG Erwei, ZHANG Yabang, LI Jiayue, WANG Manli. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation, 2023, 49(4): 62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054
    [7]TANG Shoufeng, SHI Ke, TONG Guangming, SHI Jingcan, LI Huashuo. A mine low illumination image enhancement algorithm[J]. Journal of Mine Automation, 2021, 47(10): 32-36. DOI: 10.13272/j.issn.1671-251x.2021060052
    [8]WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498
    [9]WANG Xing, BAI Shangwang, PAN Lihu, CHEN Lichao. A mine image enhancement algorithm[J]. Journal of Mine Automation, 2017, 43(3): 48-52. DOI: 10.13272/j.issn.1671-251x.2017.03.011
    [10]YANG Yong, YUE Jianhua, LI Yuliang, WANG Qingfei. A dynamic image enhancement method for mine[J]. Journal of Mine Automation, 2015, 41(11): 48-52. DOI: 10.13272/j.issn.1671-251x.2015.11.012
  • Cited by

    Periodical cited type(8)

    1. 鞠慕涵,刘万科,胡捷,谷宇鹏. 改进D~*算法的未知场景机器人运动规划. 导航定位学报. 2024(03): 145-153 .
    2. 陈思成,纪玉杰,路达. 采样机器人路径规划研究. 内燃机与配件. 2022(22): 96-98 .
    3. 郝天轩,赵立桢. 跨平台矿井应急救援路径寻优方案研究. 工矿自动化. 2020(05): 108-112 . 本站查看
    4. 熊雄. 多出口建筑疏散最优路径分层搜索算法仿真. 计算机仿真. 2020(08): 419-423 .
    5. 王飞,江明. 基于一种改进的蚁群算法的移动机器人三维路径规划研究. 安徽工程大学学报. 2019(03): 43-48 .
    6. 张苏英,赵国花,郭宝樑,于佳兴,刘慧贤. 基于改进的蚁群算法的移动机器人路径规划. 河北工业科技. 2019(06): 390-395 .
    7. 沈显庆,孙启智. BSO算法在移动机器人三维路径规划中的应用. 黑龙江科技大学学报. 2019(06): 747-751 .
    8. 龚星宇,常心坦,贾澎涛,罗碧波. 基于蚁群算法的井下救援路径优化方法. 工矿自动化. 2018(03): 76-81 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (142) PDF downloads (38) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return