Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Gang, ZHANG Yabing, YANG Qinghe, et al. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation,2023,49(11):84-91.  doi: 10.13272/j.issn.1671-251x.2023080093
Citation: LI Gang, ZHANG Yabing, YANG Qinghe, et al. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation,2023,49(11):84-91.  doi: 10.13272/j.issn.1671-251x.2023080093

Super-resolution reconstruction of rock CT images based on Real-ESRGAN

doi: 10.13272/j.issn.1671-251x.2023080093
  • Received Date: 2023-08-26
  • Rev Recd Date: 2023-11-16
  • Available Online: 2023-11-27
  • Due to factors such as image acquisition equipment and geological environment, rock CT images have low resolution and unclear details. However, existing image super-resolution reconstruction methods are prone to losing details when characterizing high-density mineral particles and pores and cracks inside. To solve the above problems, an improved enhanced super-resolution generative adversarial network (Real-ESRGAN) is used for super-resolution reconstruction of rock CT images. The sandstone of the 15th coal seam floor in Zhaozhuang Coal Mine, Shanxi Jincheng Anthracite Mining Group Co., Ltd. is selected as the research object to study the reconstruction performance of Real-ESRGAN under different image magnifications. It is compared with algorithms such as super-resolution convolutional neural network (SRCNN), super-resolution generative adversarial network (SRGAN), enhanced super-resolution generative adversarial network (ESRGAN), and enhanced deep super-resolution network (EDSR). The experimental results show the following points. ① The high-resolution images reconstructed using Real-ESRGAN have clearer visual effects than the original CT images. The contours of cracks and high-density mineral particles in the reconstructed images are more prominent, greatly improving the visibility of the images. ② In terms of objective evaluation, the Real-ESRGAN algorithm achieves a peak signal-to-noise ratio (PSNR) of 36.880 dB and a structural similarity (SSIM) of 0.933 in the image after 2x super-resolution reconstruction. But as the magnification increases, the pores on the 6x super-resolution reconstructed image become blurry, with PSNR decreasing to 32.781 dB and SSIM reaching 0.896. ③ The porosity and throat length distribution ratio of the Real-ESRGAN reconstructed super-resolution image are very close to the original CT image, preserving important microstructural information of the rock.

     

  • loading
  • [1]
    张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659-2671.

    ZHANG Yanbo,XU Yuedong,LIU Xiangxin,et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT[J]. Rock and Soil Mechanics,2021,42(10):2659-2671.
    [2]
    ZHAO Yusong,GAO Yongtao,WU Shuchuan. Influence of different concealment conditions of parallel double flaws on mechanical properties and failure characteristics of brittle rock under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,109(2). DOI: 10.1016/j.tafmec.2020.102751.
    [3]
    杨琪,于岩斌,崔文亭,等. 单轴压缩下煤岩细观结构参数表征及演化规律[J]. 煤炭科学技术,2023,51(4):88-95.

    YANG Qi,YU Yanbin,CUI Wenting,et al. Fracture evolution of coal under uniaxial compression based on X-ray microscopic imaging[J]. Coal Science and Technology,2023,51(4):88-95.
    [4]
    李文帅,王连国,陆银龙,等. 真三轴条件下砂岩强度、变形及破坏特征试验研究[J]. 采矿与安全工程学报,2019,36(1):191-197. doi: 10.13545/j.cnki.jmse.2019.01.025

    LI Wenshuai,WANG Lianguo,LU Yinlong,et al. Experimental investigation on the strength,deformation and failure characteristics of sandstone under true triaxial compression[J]. Journal of Mining & Safety Engineering,2019,36(1):191-197. doi: 10.13545/j.cnki.jmse.2019.01.025
    [5]
    张廷蓉,滕奇志,李征骥,等. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版),2018,52(7):1294-1301.

    ZHANG Tingrong,TENG Qizhi,LI Zhengji,et al. Super-resolution reconstruction for three-dimensional core CT image[J]. Journal of Zhejiang University(Engineering Science),2018,52(7):1294-1301.
    [6]
    ZHU Shuyuan,ZENG Bing,ZENG Liaoyuan,et al. Image interpolation based on non-local geometric similarities and directional gradients[J]. IEEE Transactions on Multimedia,2016,18(9):1707-1719. doi: 10.1109/TMM.2016.2593039
    [7]
    PAPYAN V,ELAD M. Multi-scale patch-based image restoration[J]. IEEE Transactions on Image Processing,2016,25(1):249-261. doi: 10.1109/TIP.2015.2499698
    [8]
    DONG Chao,LOY C C,TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision,Amsterdam,2016:391-407.
    [9]
    WANG Yingda,ARMSTRONG R T,MOSTAGHIMI P,et al. Enhancing resolution of digital rock images with super resolution convolutional neural networks[J]. Journal of Petroleum Science and Engineering,2019,182. DOI: 10.1016/j.petrol.2019.106261.
    [10]
    WANG Yukai,TENG Qizhi,HE Xiaohai,et al. CT-image of rock samples super resolution using 3D convolutional neural network[J]. Computers & Geosciences,2019,133. DOI: 10.1016/j.cageo.2019.104314.
    [11]
    DONG Chao,LOY C C,HE Kaiming,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
    [12]
    LEDIG C,THEIS L,HUSZAR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. IEEE Conference on Computer Vision and Pattern Recognition,New York,2017:4681-4690.
    [13]
    GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[J]. Communications of the ACM,2014,63(11):139-144.
    [14]
    WANG Xiantao,YU Ke,WU Shixiang,et al. Esrgan:enhanced super-resolution generative adversarial networks[C]. European Conference on Computer Vision Workshops,Munich,2019:63-79.
    [15]
    辛元雪,朱凤婷,史朋飞,等. 基于改进增强型超分辨率生成对抗网络的图像超分辨率重建算法[J]. 激光与光电子学进展,2022,59(4):381-391.

    XIN Yuanxue,ZHU Fengting,SHI Pengfei,et al. Super-resolution reconstruction algorithm of images based on improved enhanced super-resolution generative adversarial network[J]. Laser & Optoelectronics Progress,2022,59(4):381-391.
    [16]
    LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops,Honolulu,2017:1132-1140.
    [17]
    WANG Xintao,XIE Liangbin,DONG Chao,et al. Real-ESRGAN:training real-world blind super-resolution with pure synthetic data[C]. IEEE/CVF International Conference on Computer Vision Workshops,Montreal,2021:1905-1914.
    [18]
    方玉明,眭相杰,鄢杰斌,等. 无参考图像质量评价研究进展[J]. 中国图象图形学报,2021,26(2):265-286. doi: 10.11834/jig.200274

    FANG Yuming,SUI Xiangjie,YAN Jiebin,et al. Progress in no-reference image quality assessment[J]. Journal of Image and Graphics,2021,26(2):265-286. doi: 10.11834/jig.200274
    [19]
    IOFFE,S,SZEGEDY,C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning,Lille,2015:448-456.
    [20]
    WANG Zhou,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. doi: 10.1109/TIP.2003.819861
    [21]
    贾洁. 基于生成对抗网络的人脸超分辨率重建及识别[D]. 成都:电子科技大学,2018.

    JIA Jie. Face super-resolution reconstruction based on generative adversarial nets and face recognition[D]. Chengdu:University of Electronic Science and Technology,2018.
    [22]
    朱新山,姚思如,孙彪,等. 图像质量评价:融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报,2018,50(5):121-128. doi: 10.11918/j.issn.0367-6234.20180517

    ZHU Xinshan,YAO Siru,SUN Biao,et al. Image quality assessment:combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology,2018,50(5):121-128. doi: 10.11918/j.issn.0367-6234.20180517
    [23]
    雷健,潘保芝,张丽华. 基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J]. 地球物理学进展,2018,33(2):653-660. doi: 10.6038/pg2018BB0108

    LEI Jian,PAN Baozhi,ZHANG Lihua. Advance of microscopic flow simulation based on digital cores and pore network[J]. Progress in Geophysics,2018,33(2):653-660. doi: 10.6038/pg2018BB0108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (1389) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return