LIU Yi, PANG Dawei, TIAN Yu. Multi object personnel detection and dynamic tracking method based on improved KCF[J]. Journal of Mine Automation,2023,49(11):129-137. DOI: 10.13272/j.issn.1671-251x.2023080015
Citation: LIU Yi, PANG Dawei, TIAN Yu. Multi object personnel detection and dynamic tracking method based on improved KCF[J]. Journal of Mine Automation,2023,49(11):129-137. DOI: 10.13272/j.issn.1671-251x.2023080015

Multi object personnel detection and dynamic tracking method based on improved KCF

More Information
  • Received Date: June 04, 2023
  • Revised Date: August 29, 2023
  • Available Online: November 22, 2023
  • Factors such as insufficient illumination in coal mine roadways, drastic changes in object scale, easy obstruction of objects, and interference from mining lights lead to low success rate and accuracy in underground object detection and tracking. In order to solve the above problems, a multi object personnel detection and dynamic tracking method based on improved kernel correlation filter (KCF) algorithm is proposed. The method can avoid detection failure due to uneven lighting in complex underground environments. The SSD detection algorithm is introduced into the improved KCF algorithm to enhance the capability to detect multiple object personnel. ① The method reads the video sequence to be tracked, uses the SSD algorithm trained on the underground dataset to detect the object in the image. The method continues reading the next frame if no object is found. ② The method places the detected object into the tracker, preprocesses the image, scores all detection boxes according to the set threshold through comparison, and arranges them in descending order based on the score. The high score detection results are directly output, while the low score detection results are used to filter out bad information to improve detection speed. ③ The method clears the tracker after tracking and predicting object M frames through KCF, and then performs object detection again. By combining detection and tracking algorithms, the continuous tracking capability of the object is ensured. The experimental results show the following points. ① The final loss value of this method is stable around 1.675, and the detection results are relatively stable. ② The SSD recognition precision after training has improved by 52.7% compared to the SSD recognition precision before training. ③ The detection success rate and tracking accuracy of this method for mine personnel are 87.9% and 88.9%, respectively, which are higher than the detection success rate and tracking accuracy of the other four algorithms (KCF, CSRT, TLD, MIL). ④ This method has a high success rate when the overlap threshold is low, and until the overlap threshold is greater than 0.8, the success rate significantly decreases. This is because the environment in the mine is diverse, and it is difficult to fully match the labeled boxes. The practical application results show that this method has high applicability in complex environments such as insufficient lighting in underground coal mine roadways, drastic changes in object scale, easy obstruction, and interference from mining lights.
  • [1]
    孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
    [2]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
    [3]
    孙继平. 煤矿监控新技术与新装备[J]. 工矿自动化,2015,41(1):1-5.

    SUN Jiping. New technologies and new equipments of coal mine monitoring[J]. Industry and Mine Automation,2015,41(1):1-5.
    [4]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [5]
    程德强,冯晨晨,唐世轩,等. 多特征融合的行人检测算法[J]. 煤炭技术,2018,37(10):254-257.

    CHENG Deqiang,FENG Chenchen,TANG Shixuan,et al. Multi-features fusion pedestrian detection algorithm[J]. Coal Technology,2018,37(10):254-257.
    [6]
    孟庆勇. 5G技术在煤矿井下应用架构探讨[J]. 工矿自动化,2020,46(7):28-33.

    Meng Qingyong. Probe on 5G architecture applied in coal mine underground[J]. Industry and Mine Automation,2020,46(7):28-33.
    [7]
    ZHANG Tianzhu,XU Changsheng,YANG M. Multi-task correlation particle filter for robust object tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,2017:4819-4827.
    [8]
    刘海仓. 基于稀疏表示的图像超分辨率与目标跟踪方法研究[D]. 长沙:湖南大学,2015.

    LIU Haicang. Reseach on image super resolution and object tracking based on sparse representation[D]. Changsha:Hunan University,2015.
    [9]
    白中浩,朱磊,李智强. 基于多模型融合和重新检测的高精度鲁棒目标跟踪[J]. 仪器仪表学报,2019,40(9):132-141.

    BAI Zhonghao,ZHU Lei,LI Zhiqiang. High-accuracy and robust object tracking based on multi-model fusion and re-detection[J]. Chinese Journal of Scientific Instrument,2019,40(9):132-141.
    [10]
    郝建华. 基于CamShift和粒子滤波的煤矿变电所人员目标跟踪算法研究[J]. 工矿自动化,2015,41(11):35-388.

    HAO Jianhua. Research of personnel tracking algorithm for coal mine substation based on CamShift and particle filter[J]. Industry and Mine Automation,2015,41(11):35-38.
    [11]
    邵小强,李康乐,陈熙,等. 基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J]. 煤炭学报,2019,44(5):1616-1624.

    SHAO Xiaoqiang,LI Kangle,CHEN Xi,et al. TOA positioning method of coalmine based on Kalman filter and parameter fitting[J]. Journal of China Coal Society,2019,44(5):1616-1624.
    [12]
    孙继平,邵子佩,刘毅. 采煤机视频压缩感知跟踪方法[J]. 工矿自动化,2018,44(3):8-11.

    SUN Jiping,SHAO Zipei,LIU Yi. Visual tracking method of shearer based on compressive sensing[J]. Industry and Mine Automation,2018,44(3):8-11.
    [13]
    贾澎涛,贾伟. 煤矿井下视频多目标轨迹跟踪算法研究[J]. 计算机工程与应用,2018,54(2):222-227. DOI: 10.3778/j.issn.1002-8331.1607-0308

    JIA Pengtao,JIA Wei. Recherche algorithm on coal mine multi-target trajectory tracking[J]. Computer Engineering and Applications,2018,54(2):222-227. DOI: 10.3778/j.issn.1002-8331.1607-0308
    [14]
    陈伟,丁世飞,许新征. 基于YCbCr模型的巷道监控中矿工脸部图像识别[J]. 煤炭科学技术,2009,37(9):79-82,85.

    CHEN Wei,DING Shifei,XU Xinzheng. Miners' face images identification in monitor images of mine gateway based on YCbCr model[J]. Coal Science and Technology,2009,37(9):79-82,85.
    [15]
    HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015. DOI: 10.1109/TPAMI.2014.2345390.
    [16]
    LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[J]. Springer,Cham,2016. DOI: 10.1007/978-3-319-46448-0_2.
    [17]
    KALAKE L,WAN Wanggen,HOU Li. Analysis based on recent deep learning approaches applied in real-time multi-object tracking:a review[J]. IEEE Access,2021(9):32650-32671. DOI: 10.1109/ACCESS.2021.3060821
    [18]
    LUKEZIC A,VOJIR T,CEHOVIN Z L,et al. Discriminative correlation filter with channel and spatial reliability[J]. International Journal of Computer Vision,2018. DOI: 10.1007/s11263-017-1061-3.
    [19]
    ZHAO Shuaitong,YANG Xianzhao,CHEN Yang,et al. Research on pedestrian detection algorithms combined with lightweight networks[C]. International Conference on Algorithms,High Performance Computing and Artificial Intelligence,Guangzhou,2022:62-67.
    [20]
    CHEPLYGINA V,SRENSEN L,TAX D M,et al. Label stability in multiple instance learning[C]. Medical Image Computing and Computer-Assisted Intervention,Springer,Cham,2015. DOI: 10.1007/978-3-319-24553-9_66.
  • Related Articles

    [1]QIU Jinbo, LIU Cong, WU Haokun, ZHUANG Deyu, ZHU Shengqiang. Current status and key technology prospects of shearer intelligent development[J]. Journal of Mine Automation, 2024, 50(7): 64-78. DOI: 10.13272/j.issn.1671-251x.2024050039
    [2]FANG Xinqiu, FENG Haotian, LIANG Minfu, CHEN Ningning, WU Gang, SONG Yang. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation, 2023, 49(6): 78-87. DOI: 10.13272/j.issn.1671-251x.18107
    [3]HAN Zhe, XU Yuanqiang, ZHANG Desheng, ZHAO Quanwen, DU Ming, LI Hui, ZHOU Jie, ZHANG Shuai, LIU Jie, GAO Jianxun, WEN Cunbao, ZHOU Xiang, ZHAO Kai. Non-repeated support advanced support intelligent control system[J]. Journal of Mine Automation, 2023, 49(4): 141-146, 152. DOI: 10.13272/j.issn.1671-251x.2022090004
    [4]DAI Wei, WANG Yudong, DONG Liang, ZHAO Yuemin. Development and exploration of intelligent dense medium separation technology for coal[J]. Journal of Mine Automation, 2022, 48(11): 20-26, 44. DOI: 10.13272/j.issn.1671-251x.2022060106
    [5]GAO Qiang, WANG Jun, GAO Xiaoqiang, REN Wenqing. Remote intelligent control of continuous shearer[J]. Journal of Mine Automation, 2021, 47(S1): 51-54.
    [6]GAO Xicai, MA Tengfei, WANG Qi, LIU Shuai, ZHANG Xichen, FAN Kai, TANG Jianqiang, HU Bin. Intelligent fully mechanized mining support technology and equipment for thin-medium-thick coal seam[J]. Journal of Mine Automation, 2021, 47(11): 95-100. DOI: 10.13272/j.issn.1671-251x.2021080037
    [7]LI Xiaoqing, YU Miao, SHEN Zuying, CHEN Xuedong, ZENG Lizhan. Design of digital intelligent rope guider[J]. Journal of Mine Automation, 2014, 40(5): 81-84. DOI: 10.13272/j.issn.1671-251x.2014.05.020
    [8]ZHA Bing. Design of intelligent control system for vehicle cooling fa[J]. Journal of Mine Automation, 2013, 39(3): 98-100.
    [9]ZHANG Guo-Wei. Research of Fault Detection and Intelligent Diagnosis Technology of Heavy-loading Machinery in Copper-scandium Metal Mine[J]. Journal of Mine Automation, 2011, 37(8): 34-37.
    [10]LEI Ru-hai, MA Yong, WANG Ju. Intelligent Control of Filter Pressing System for Float Coal[J]. Journal of Mine Automation, 2005, 31(5): 1-3.
  • Cited by

    Periodical cited type(30)

    1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 .
    2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
    3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 .
    4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 .
    5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
    6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 .
    7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 .
    8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
    9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 .
    10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 .
    11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 .
    12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 .
    13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 .
    14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 .
    16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 .
    17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 .
    18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 .
    19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 .
    20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 .
    21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 .
    22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 .
    23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 .
    24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 .
    25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 .
    26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 .
    27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 .
    28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 .
    29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
    30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (988) PDF downloads (49) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return