Citation: | DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154. DOI: 10.13272/j.issn.1671-251x.2023070085 |
[1] |
张旭辉,潘格格,郭欢欢,等. 基于深度迁移学习的采煤机摇臂部滚动轴承故障诊断方法[J]. 煤炭科学技术,2022,50(4):256-263.
ZHANG Xuhui,PAN Gege,GUO Huanhuan,et al. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. Coal Science and Technology,2022,50(4):256-263.
|
[2] |
郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.
GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26.
|
[3] |
ZHANG Xiaochen,CONG Yiwen,YUAN Zhe,et al. Early fault detection method of rolling bearing based on MCNN and GRU network with an attention mechanism[J]. Shock and Vibration,2021. DOI: 10.1155/2021/6660243.
|
[4] |
ZHENG Zhi,FU Jiuman,LU Chuanqi,et al. Research on rolling bearing fault diagnosis of small dataset based on a new optimal transfer learning network[J]. Measurement,2021,177. DOI: 10.1016/J.MEASUREMENT.2021.109285.
|
[5] |
史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.
SHI Zhiyuan,TENG Hu,MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.
|
[6] |
姚齐水,别帅帅,余江鸿,等. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J]. 振动工程学报,2022,35(4):949-957.
YAO Qishui,BIE Shuaishuai,YU Jianghong,et al. A bearing fault diagnosis method combining improved inception V2 module and CBAM[J]. Journal of Vibration Engineering,2022,35(4):949-957.
|
[7] |
SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://arxiv.org/abs/1710.09829.
|
[8] |
王超群,李彬彬,焦斌. 基于门控循环单元胶囊网络的滚动轴承故障诊断[J]. 轴承,2021(5):56-62.
WANG Chaoqun,LI Binbin,JIAO Bin. Fault diagnosis for rolling bearings based on capsule network of gated recurrent unit[J]. Bearing,2021(5):56-62.
|
[9] |
CHEN Tianyou,WANG Zhihua,YANG Xiang,et al. A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals[J]. Measurement,2019,148. DOI: 10.1016/j.measurement.2019.106857.
|
[10] |
WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. DOI: 10.1109/TIE.2017.2774777
|
[11] |
LIANG Pengfei,DENG Chao,WU Jun,et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J]. Knowledge-Based Systems,2020,198. DOI: 10.1016/j.knosys.2020.105895.
|
[12] |
YAN Jialin,KAN Jiangming,LUO Haifeng. Rolling bearing fault diagnosis based on Markov transition field and residual network[J]. Sensors,2022,22(10). DOI: 10.3390/S22103936.
|
[13] |
WANG Mengjiao,WANG Wenjie,ZHANG Xinan,et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy,2022,24(6). DOI: 10.3390/E24060751.
|
[14] |
姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.
JIANG Jiaguo,GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.
|
[15] |
赵志宏,李春秀,窦广鉴,等. 基于MTF−CNN的轴承故障诊断研究[J]. 振动与冲击,2023,42(2):126-131.
ZHAO Zhihong,LI Chunxiu,DOU Guangjian,et al. Bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2023,42(2):126-131.
|
[16] |
瞿红春,朱伟华,高鹏宇,等. 基于注意力循环胶囊网络的滚动轴承故障诊断[J]. 振动. 测试与诊断,2022,42(6):1108-1114,1243.
QU Hongchun,ZHU Weihua,GAO Pengyu,et al. Fault diagnosis of rolling bearing based on attention recurrent capsule network[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(6):1108-1114,1243.
|
[17] |
PECHYONKIN M. Understanding Hinton's capsule networks. Part 3. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://pechyonkin.me/capsules-3/.
|
[18] |
Bearing Data Center of Case Western Reserve University. Seeded fault test data [EB/OL]. [2023-06-05]. https://engineering.case.edu/bearingdatacenter/.
|
[19] |
LEE J,QIU H,YU G,et al. Bearing data set[EB/OL]. [2023-06-05]. https://data.nasa.gov/download/brfb-gzcv/application%2Fzip.
|
[20] |
ZHANG Wei,PENG Gaoliang,LI Chuanhao,et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017,17(2). DOI: 10.3390/s17020425.
|
1. |
王浩. 选煤厂自动加介质系统的设计. 机械制造. 2024(02): 53-55 .
![]() | |
2. |
刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 .
![]() | |
3. |
申杰. 选煤厂自动化重介质分选技术的应用分析. 矿业装备. 2024(05): 198-200 .
![]() | |
4. |
倪云峰,魏富太,郭苹. 重介质分选过程中悬浮液密度和黏度控制算法研究. 煤炭技术. 2024(08): 296-299 .
![]() | |
5. |
张文军. 选煤厂生产线调度最优决策专家系统设计. 自动化仪表. 2024(07): 75-79 .
![]() | |
6. |
张军,蔚文朋,张硕,姜坤坤,王杰,李少宁,董良,代伟. 基于云熵优化的云模型-组合赋权煤炭分选工艺综合评价方法. 洁净煤技术. 2024(S2): 508-514 .
![]() | |
7. |
王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 .
![]() | |
8. |
郎艳波. 重介质选煤装备的智能化设计改造及应用. 机械研究与应用. 2023(01): 136-139+143 .
![]() | |
9. |
班海俊,武源,张锦龙,刘诗宇,常艇. 李家壕选煤厂智能加介系统研究. 煤炭工程. 2023(04): 168-172 .
![]() | |
10. |
柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 .
![]() | |
11. |
代伟,王昱栋,彭勇. 重介质选煤过程数学模型的研究现状与展望. 控制工程. 2023(10): 1759-1766 .
![]() | |
12. |
吴毅刚,朱陈雨. 重介质悬浮液密度的压差式测量方法研究现状及趋势. 煤炭加工与综合利用. 2023(10): 20-24+28 .
![]() | |
13. |
司海波. 重介质洗煤自动控制系统设计研究. 机械管理开发. 2022(08): 257-259 .
![]() | |
14. |
代伟,王昱栋,董良,赵跃民. 煤炭智能重介分选技术进展与探索. 工矿自动化. 2022(11): 20-26+44 .
![]() | |
15. |
周增宏. 选煤厂制介及加介系统设计与应用. 陕西煤炭. 2021(01): 162-166+173 .
![]() | |
16. |
寇金成. 选煤厂重介质悬浮液密度控制方案优化. 山西焦煤科技. 2021(03): 41-43 .
![]() | |
17. |
王庆飞,齐健,王洪兵. 乌东选煤厂重介质浅槽分选系统的分选试验研究. 能源与环保. 2021(09): 260-265 .
![]() | |
18. |
汤优优,喻连香,陈雄. 重介质选矿技术在处理有色金属矿和非金属矿的研究现状及展望. 矿产综合利用. 2021(04): 118-124 .
![]() | |
19. |
王光辉,彭勇,代伟,董良,马小平. 基于灵敏度分析与增强捕食-食饵优化的重介质选煤过程动态模型. 煤炭学报. 2021(09): 2813-2823 .
![]() | |
20. |
邢欢,周增宏. 一种射流喷射式自动加介系统. 洁净煤技术. 2021(S1): 97-101 .
![]() | |
21. |
李志军,韩伟,王光辉. 基于DASCN的重介质浅槽分选灰分预测. 煤炭工程. 2021(S1): 122-126 .
![]() | |
22. |
钱丽霞. 选煤厂智能介质添加系统研究. 内蒙古煤炭经济. 2021(21): 55-57 .
![]() |