DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154. DOI: 10.13272/j.issn.1671-251x.2023070085
Citation: DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154. DOI: 10.13272/j.issn.1671-251x.2023070085

A fault diagnosis method for mine rolling bearings based on deep learning

More Information
  • Received Date: July 23, 2023
  • Revised Date: January 11, 2024
  • Available Online: January 30, 2024
  • A fault diagnosis method for mine rolling bearings based on Markov transition field(MTF) and dual-channel multi-scale convolutional capsule network (DMCCN) is proposed to address the problem of traditional convolutional neural networks being unable to fully explore data features in complex environments such as coal mines. The MTF-DMCCN fault diagnosis model is constructed. After encoding the original vibration signal based on MTF and grayscale image, a dual channel input mode is used to connect the convolutional network to obtain shallow features. The method inputs the feature maps fusion into the capsule network to improve the sensitivity of the model to spatial information. The method introduces Inception modules into the network to focus on multi-scale features and enhance the network's feature extraction capabilities. Finally, vectorization processing is carried out through the capsule layer to achieve fault diagnosis and classification of rolling bearings. The results of ablation, noise resistance, and generalization experiments show that the Inception module, grayscale image input, and MTF image input all have a positive promoting effect on bearing fault diagnosis. MTF coding has the highest improvement in diagnostic precision of the model. The MTF-DMCCN model has good robustness and noise resistance. The MTF-DMCCN model has excellent adaptability to variable speed and still exhibits good generalization performance under different operating conditions. To further validate the performance of the model, image encoding methods such as Gram angle difference field (GADF), Gram angle sum field (GASF), grayscale image, and MTF are selected and combined with different networks. Comparative experiments are conducted using the University of Cincinnati intelligent maintenance system (IMS). The results show that the MTF-DMCCN model can effectively recognize the type of rolling bearing faults, with an average fault diagnosis accuracy of 99.37%.
  • [1]
    张旭辉,潘格格,郭欢欢,等. 基于深度迁移学习的采煤机摇臂部滚动轴承故障诊断方法[J]. 煤炭科学技术,2022,50(4):256-263.

    ZHANG Xuhui,PAN Gege,GUO Huanhuan,et al. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. Coal Science and Technology,2022,50(4):256-263.
    [2]
    郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.

    GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26.
    [3]
    ZHANG Xiaochen,CONG Yiwen,YUAN Zhe,et al. Early fault detection method of rolling bearing based on MCNN and GRU network with an attention mechanism[J]. Shock and Vibration,2021. DOI: 10.1155/2021/6660243.
    [4]
    ZHENG Zhi,FU Jiuman,LU Chuanqi,et al. Research on rolling bearing fault diagnosis of small dataset based on a new optimal transfer learning network[J]. Measurement,2021,177. DOI: 10.1016/J.MEASUREMENT.2021.109285.
    [5]
    史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.

    SHI Zhiyuan,TENG Hu,MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.
    [6]
    姚齐水,别帅帅,余江鸿,等. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J]. 振动工程学报,2022,35(4):949-957.

    YAO Qishui,BIE Shuaishuai,YU Jianghong,et al. A bearing fault diagnosis method combining improved inception V2 module and CBAM[J]. Journal of Vibration Engineering,2022,35(4):949-957.
    [7]
    SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://arxiv.org/abs/1710.09829.
    [8]
    王超群,李彬彬,焦斌. 基于门控循环单元胶囊网络的滚动轴承故障诊断[J]. 轴承,2021(5):56-62.

    WANG Chaoqun,LI Binbin,JIAO Bin. Fault diagnosis for rolling bearings based on capsule network of gated recurrent unit[J]. Bearing,2021(5):56-62.
    [9]
    CHEN Tianyou,WANG Zhihua,YANG Xiang,et al. A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals[J]. Measurement,2019,148. DOI: 10.1016/j.measurement.2019.106857.
    [10]
    WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. DOI: 10.1109/TIE.2017.2774777
    [11]
    LIANG Pengfei,DENG Chao,WU Jun,et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J]. Knowledge-Based Systems,2020,198. DOI: 10.1016/j.knosys.2020.105895.
    [12]
    YAN Jialin,KAN Jiangming,LUO Haifeng. Rolling bearing fault diagnosis based on Markov transition field and residual network[J]. Sensors,2022,22(10). DOI: 10.3390/S22103936.
    [13]
    WANG Mengjiao,WANG Wenjie,ZHANG Xinan,et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy,2022,24(6). DOI: 10.3390/E24060751.
    [14]
    姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.

    JIANG Jiaguo,GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.
    [15]
    赵志宏,李春秀,窦广鉴,等. 基于MTF−CNN的轴承故障诊断研究[J]. 振动与冲击,2023,42(2):126-131.

    ZHAO Zhihong,LI Chunxiu,DOU Guangjian,et al. Bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2023,42(2):126-131.
    [16]
    瞿红春,朱伟华,高鹏宇,等. 基于注意力循环胶囊网络的滚动轴承故障诊断[J]. 振动. 测试与诊断,2022,42(6):1108-1114,1243.

    QU Hongchun,ZHU Weihua,GAO Pengyu,et al. Fault diagnosis of rolling bearing based on attention recurrent capsule network[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(6):1108-1114,1243.
    [17]
    PECHYONKIN M. Understanding Hinton's capsule networks. Part 3. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://pechyonkin.me/capsules-3/.
    [18]
    Bearing Data Center of Case Western Reserve University. Seeded fault test data [EB/OL]. [2023-06-05]. https://engineering.case.edu/bearingdatacenter/.
    [19]
    LEE J,QIU H,YU G,et al. Bearing data set[EB/OL]. [2023-06-05]. https://data.nasa.gov/download/brfb-gzcv/application%2Fzip.
    [20]
    ZHANG Wei,PENG Gaoliang,LI Chuanhao,et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017,17(2). DOI: 10.3390/s17020425.
  • Related Articles

    [1]YAN Guofeng, HUANG Xingli, YAN Zhenguo. Research on exothermic and kinetic characteristics of low-temperature oxidation of preoxidized coal[J]. Journal of Mine Automation, 2022, 48(7): 135-141. DOI: 10.13272/j.issn.1671-251x.2022030032
    [2]HOU Fei, CAO Weihu, WANG Yi, ZHONG Xiaoxing. Comparative study on test methods of coal low-temperature oxidation kinetic parameters[J]. Journal of Mine Automation, 2021, 47(9): 58-64. DOI: 10.13272/j.issn.1671-251x.17812
    [3]LONG Nengzeng, YUAN Mei, AO Xuanjun, LI Xinling, ZHANG Ping. Prediction of coal and gas outburst intensity based on LLE-FOA-BP model[J]. Journal of Mine Automation, 2019, 45(10): 68-73. DOI: 10.13272/j.issn.1671-251x.2019010054
    [4]LI Shengpu, WANG Xiaohui. Study of mining method of signal of coal and gas outburst[J]. Journal of Mine Automation, 2015, 41(6): 58-60. DOI: 10.13272/j.issn.1671-251x.2015.06.014
    [5]WANG Sheguo, TIAN Zhimin, ZHANG Feng, WU Shasha. System of coal and gas outburst prediction based on improved BP neural network[J]. Journal of Mine Automation, 2014, 40(5): 34-37. DOI: 10.13272/j.issn.1671-251x.2014.05.009
    [6]HUANG Yu-feng, CUI Jian-ming, LIU Zhun, SUN Long-tao. Design of Monitoring System of Coal and Gas Outburst Based on DSP and Single-chip Microcomputer[J]. Journal of Mine Automation, 2011, 37(4): 56-59.
    [7]LI Da-feng, ZHAO Shuai, YANG Dai-ping. Forecasting Method of Coal and Gas Outburst Based on KPCA-SVM[J]. Journal of Mine Automation, 2010, 36(10): 36-38.
    [8]DU feng~, SU Heng-yu~, LI Chun-hui~. Design of Management System of Prediction to Coal and Gas Outburst Based on SuperMap[J]. Journal of Mine Automation, 2010, 36(2): 4-7.
    [9]LI Yang, SHI Bi-ming. Research of Prediction of Coal and Gas Outburst Based on BP Artificial Neural Network Utilizing Bayesian Regularizatio[J]. Journal of Mine Automation, 2009, 35(2): 1-5.
    [10]XU Jian, MA Bi. Application of Distributed Temperature Sensing System of Optical Fiber in Temperature Measurement of Freezing Overburden Section of Coal Mine[J]. Journal of Mine Automation, 2007, 33(2): 99-101.
  • Cited by

    Periodical cited type(22)

    1. 王浩. 选煤厂自动加介质系统的设计. 机械制造. 2024(02): 53-55 .
    2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 .
    3. 申杰. 选煤厂自动化重介质分选技术的应用分析. 矿业装备. 2024(05): 198-200 .
    4. 倪云峰,魏富太,郭苹. 重介质分选过程中悬浮液密度和黏度控制算法研究. 煤炭技术. 2024(08): 296-299 .
    5. 张文军. 选煤厂生产线调度最优决策专家系统设计. 自动化仪表. 2024(07): 75-79 .
    6. 张军,蔚文朋,张硕,姜坤坤,王杰,李少宁,董良,代伟. 基于云熵优化的云模型-组合赋权煤炭分选工艺综合评价方法. 洁净煤技术. 2024(S2): 508-514 .
    7. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 .
    8. 郎艳波. 重介质选煤装备的智能化设计改造及应用. 机械研究与应用. 2023(01): 136-139+143 .
    9. 班海俊,武源,张锦龙,刘诗宇,常艇. 李家壕选煤厂智能加介系统研究. 煤炭工程. 2023(04): 168-172 .
    10. 柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 .
    11. 代伟,王昱栋,彭勇. 重介质选煤过程数学模型的研究现状与展望. 控制工程. 2023(10): 1759-1766 .
    12. 吴毅刚,朱陈雨. 重介质悬浮液密度的压差式测量方法研究现状及趋势. 煤炭加工与综合利用. 2023(10): 20-24+28 .
    13. 司海波. 重介质洗煤自动控制系统设计研究. 机械管理开发. 2022(08): 257-259 .
    14. 代伟,王昱栋,董良,赵跃民. 煤炭智能重介分选技术进展与探索. 工矿自动化. 2022(11): 20-26+44 . 本站查看
    15. 周增宏. 选煤厂制介及加介系统设计与应用. 陕西煤炭. 2021(01): 162-166+173 .
    16. 寇金成. 选煤厂重介质悬浮液密度控制方案优化. 山西焦煤科技. 2021(03): 41-43 .
    17. 王庆飞,齐健,王洪兵. 乌东选煤厂重介质浅槽分选系统的分选试验研究. 能源与环保. 2021(09): 260-265 .
    18. 汤优优,喻连香,陈雄. 重介质选矿技术在处理有色金属矿和非金属矿的研究现状及展望. 矿产综合利用. 2021(04): 118-124 .
    19. 王光辉,彭勇,代伟,董良,马小平. 基于灵敏度分析与增强捕食-食饵优化的重介质选煤过程动态模型. 煤炭学报. 2021(09): 2813-2823 .
    20. 邢欢,周增宏. 一种射流喷射式自动加介系统. 洁净煤技术. 2021(S1): 97-101 .
    21. 李志军,韩伟,王光辉. 基于DASCN的重介质浅槽分选灰分预测. 煤炭工程. 2021(S1): 122-126 .
    22. 钱丽霞. 选煤厂智能介质添加系统研究. 内蒙古煤炭经济. 2021(21): 55-57 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (959) PDF downloads (135) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return