Citation: | HAN Yu, WANG Lanhao, LIU Qinshan, et al. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation,2023,49(3):100-106. DOI: 10.13272/j.issn.1671-251x.2022100019 |
[1] |
桂夏辉,邢耀文,曹亦俊,等. 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报,2021,46(9):2715-2732.
GUI Xiahui,XING Yaowen,CAO Yijun,et al. Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of China Coal Society,2021,46(9):2715-2732.
|
[2] |
周娟华,李太友. 《智能化选煤厂建设通用技术规范》标准解读[J]. 煤炭加工与综合利用,2022(1):71-78.
ZHOU Juanhua,LI Taiyou. Interpretation of General technical specification for construction of intelligent coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):71-78.
|
[3] |
王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32.
WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.
|
[4] |
GB/T 212—2008煤的工业分析方法[S].
GB/T 212-2008 Industrial analysis method of coal[S].
|
[5] |
张泽琳,杨建国. 煤灰分在线检测方法及设备[J]. 选煤技术,2012(2):59-63,72.
ZHANG Zelin,YANG Jianguo. Research on process and equipment of coal ash content on-line detection[J]. Coal Preparation Technology,2012(2):59-63,72.
|
[6] |
张勇,王介生,王伟,等. 浮选生产过程经济技术指标的软测量建模[J]. 控制工程,2005(4):346-348,378.
ZHANG Yong,WANG Jiesheng,WANG Wei,et al. Soft-sensor modeling for economy and technology indexes in flotation process[J]. Control Engineering of China,2005(4):346-348,378.
|
[7] |
汤化明,王玲,杨国华,等. 人工智能在矿物加工技术中的应用与发展[J]. 金属矿山,2022(2):1-9. DOI: 10.19614/j.cnki.jsks.202202001
TANG Huaming,WANG Ling,YANG Guohua,et al. Application and development of artificial intelligence in mineral processing technology[J]. Metal Mine,2022(2):1-9. DOI: 10.19614/j.cnki.jsks.202202001
|
[8] |
魏凌敖. 基于机器视觉的煤泥浮选加药控制系统研究[D]. 徐州: 中国矿业大学, 2020.
WEI Ling'ao. Research of coal slime flotation dosing control system based on machine vision[D]. Xuzhou: China University of Mining and Technology, 2020.
|
[9] |
桂卫华,阳春华,徐德刚,等. 基于机器视觉的矿物浮选过程监控技术研究进展[J]. 自动化学报,2013,39(11):1879-1888. DOI: 10.3724/SP.J.1004.2013.01879
GUI Weihua,YANG Chunhua,XU Degang,et al. Machine-vision-based online measuring and controlling technologies for mineral flotation-a review[J]. Acta Automatica Sinica,2013,39(11):1879-1888. DOI: 10.3724/SP.J.1004.2013.01879
|
[10] |
谭利平,张泽琳,赵伟,等. 基于机器视觉的矿物浮选泡沫监控研究进展[J]. 矿业研究与开发,2020,40(11):123-130.
TAN Liping,ZHANG Zelin,ZHAO Wei,et al. Research status of mineral flotation foam monitoring based on machine vision[J]. Mining Research and Development,2020,40(11):123-130.
|
[11] |
曹文艳,王然风,樊民强,等. 基于半监督聚类的煤泥浮选泡沫图像分类方法[J]. 工矿自动化,2019,45(7):38-42,65.
CAO Wenyan,WANG Ranfeng,FAN Minqiang,et al. Coal slime flotation foam image classification method based on semi-supervised clustering[J]. Industry and Mine Automation,2019,45(7):38-42,65.
|
[12] |
王光辉. 煤泥浮选过程模型仿真及控制研究[D]. 徐州: 中国矿业大学, 2012.
WANG Guanghui. Model simulation and control of coal slurry flotation process[D]. Xuzhou: China University of Mining and Technology, 2012.
|
[13] |
高博. 基于图像灰度特征的浮选尾矿灰分软测量研究[D]. 徐州: 中国矿业大学, 2016.
GAO Bo. Study on soft-sensing model for ash measurement of floatation tailings based on gray features of image[D]. Xuzhou: China University of Mining and Technology, 2016.
|
[14] |
包玉奇,杨洁明. 基于机器视觉的浮选尾矿灰分检测[J]. 煤炭技术,2015,34(9):313-316.
BAO Yuqi,YANG Jieming. Flotation tailings ash detection based on machine vision[J]. Coal Technology,2015,34(9):313-316.
|
[15] |
王靖千,王然风,付翔,等. 基于彩色图像处理的浮选尾煤灰分软测量研究[J]. 煤炭工程,2020,52(3):137-142.
WANG Jingqian,WANG Ranfeng,FU Xiang,et al. Study on soft sensing of ash content in flotation tail coal based on color image processing[J]. Coal Engineering,2020,52(3):137-142.
|
[16] |
WANG Guichao,FENG Dongxia,NGUYEN A,et al. The dynamic contact angle of a bubble with an immersed-in-water particle and its implications for bubble-particle detachment[J]. International Journal of Mineral Processing,2016,151:22-32. DOI: 10.1016/j.minpro.2016.04.001
|
[17] |
周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.
|
[18] |
焦李成,杨淑媛,刘芳,等. 神经网络七十年:回顾与展望[J]. 计算机学报,2016,39(8):1697-1716.
JIAO Licheng,YANG Shuyuan,LIU Fang,et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers,2016,39(8):1697-1716.
|
[19] |
周博文,王然风,付翔. 基于浮选尾煤图像的灰分检测试验研究[J]. 矿业研究与开发,2021,41(8):172-177.
ZHOU Bowen,WANG Ranfeng,FU Xiang. Experimental research on ash content detection based on coal flotation tailings images[J]. Mining Research and Development,2021,41(8):172-177.
|
[20] |
SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks,2015,61:85-117. DOI: 10.1016/j.neunet.2014.09.003
|
[21] |
徐睿,梁循,齐金山,等. 极限学习机前沿进展与趋势[J]. 计算机学报,2019,42(7):1640-1670.
XU Rui,LIANG Xun,QI Jinshan,et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers,2019,42(7):1640-1670.
|
1. |
陈伟,陈志良,侯强. 煤矿井下液压锚杆钻机钻臂定位控制方法. 自动化与仪表. 2024(08): 29-33+39 .
![]() | |
2. |
李富强. 锚杆钻车施工影响因素分析. 中国机械. 2023(33): 90-93 .
![]() |