HAN Yu, WANG Lanhao, LIU Qinshan, et al. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation,2023,49(3):100-106. DOI: 10.13272/j.issn.1671-251x.2022100019
Citation: HAN Yu, WANG Lanhao, LIU Qinshan, et al. Intelligent detection model of flotation tailings ash based on CNN-BP[J]. Journal of Mine Automation,2023,49(3):100-106. DOI: 10.13272/j.issn.1671-251x.2022100019

Intelligent detection model of flotation tailings ash based on CNN-BP

More Information
  • Received Date: October 10, 2022
  • Revised Date: March 05, 2023
  • Available Online: March 26, 2023
  • The tailings ash is an important production index of flotation systems. It not only reflects the current operating conditions of flotation system and clean coal recovery, but also has important significance for intelligent flotation control. The existing image-based detection method of flotation tailings ash has the problems of incomplete feature extraction and insufficient model precision. In order to solve the above problems, an intelligent detection method of flotation tailings ash based on convolutional neural network (CNN) - back propagation (BP) is proposed. An intelligent detection model of flotation tailings ash is constructed by combining CNN preliminary prediction and BP neural network compensation prediction. The pulp image feature data is extracted through CNN to preliminarily predict the tailings ash. The image gray feature data and color feature data are used as input to the BP compensation model. The difference between the preliminary prediction value and the actual value is used as output. Finally, the preliminary prediction value and the compensation prediction value are added to obtain the flotation tailings ash. The experimental results show that when the rotor of the magnetic stirrer is small, the rotation speed is 500 r/min, and the light intensity is 12 750 Lux, the pulp is fully stirred, and the image quality is the best. Compared with the CNN model and extreme learning machine (ELM) model, the CNN-BP model has the highest prediction precision, the smallest error fluctuation range. The prediction error is within the range of −2% to +2%. The root mean square error (RMSE) of the CNN-BP model is 0.7705, the determination coefficient is 0.9974, and the mean absolute error (MAE) is 0.5572%. This indicates that its high precision, good effect and strong generalization can meet the requirements of on-site production testing.
  • [1]
    桂夏辉,邢耀文,曹亦俊,等. 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报,2021,46(9):2715-2732.

    GUI Xiahui,XING Yaowen,CAO Yijun,et al. Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of China Coal Society,2021,46(9):2715-2732.
    [2]
    周娟华,李太友. 《智能化选煤厂建设通用技术规范》标准解读[J]. 煤炭加工与综合利用,2022(1):71-78.

    ZHOU Juanhua,LI Taiyou. Interpretation of General technical specification for construction of intelligent coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):71-78.
    [3]
    王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32.

    WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.
    [4]
    GB/T 212—2008煤的工业分析方法[S].

    GB/T 212-2008 Industrial analysis method of coal[S].
    [5]
    张泽琳,杨建国. 煤灰分在线检测方法及设备[J]. 选煤技术,2012(2):59-63,72.

    ZHANG Zelin,YANG Jianguo. Research on process and equipment of coal ash content on-line detection[J]. Coal Preparation Technology,2012(2):59-63,72.
    [6]
    张勇,王介生,王伟,等. 浮选生产过程经济技术指标的软测量建模[J]. 控制工程,2005(4):346-348,378.

    ZHANG Yong,WANG Jiesheng,WANG Wei,et al. Soft-sensor modeling for economy and technology indexes in flotation process[J]. Control Engineering of China,2005(4):346-348,378.
    [7]
    汤化明,王玲,杨国华,等. 人工智能在矿物加工技术中的应用与发展[J]. 金属矿山,2022(2):1-9. DOI: 10.19614/j.cnki.jsks.202202001

    TANG Huaming,WANG Ling,YANG Guohua,et al. Application and development of artificial intelligence in mineral processing technology[J]. Metal Mine,2022(2):1-9. DOI: 10.19614/j.cnki.jsks.202202001
    [8]
    魏凌敖. 基于机器视觉的煤泥浮选加药控制系统研究[D]. 徐州: 中国矿业大学, 2020.

    WEI Ling'ao. Research of coal slime flotation dosing control system based on machine vision[D]. Xuzhou: China University of Mining and Technology, 2020.
    [9]
    桂卫华,阳春华,徐德刚,等. 基于机器视觉的矿物浮选过程监控技术研究进展[J]. 自动化学报,2013,39(11):1879-1888. DOI: 10.3724/SP.J.1004.2013.01879

    GUI Weihua,YANG Chunhua,XU Degang,et al. Machine-vision-based online measuring and controlling technologies for mineral flotation-a review[J]. Acta Automatica Sinica,2013,39(11):1879-1888. DOI: 10.3724/SP.J.1004.2013.01879
    [10]
    谭利平,张泽琳,赵伟,等. 基于机器视觉的矿物浮选泡沫监控研究进展[J]. 矿业研究与开发,2020,40(11):123-130.

    TAN Liping,ZHANG Zelin,ZHAO Wei,et al. Research status of mineral flotation foam monitoring based on machine vision[J]. Mining Research and Development,2020,40(11):123-130.
    [11]
    曹文艳,王然风,樊民强,等. 基于半监督聚类的煤泥浮选泡沫图像分类方法[J]. 工矿自动化,2019,45(7):38-42,65.

    CAO Wenyan,WANG Ranfeng,FAN Minqiang,et al. Coal slime flotation foam image classification method based on semi-supervised clustering[J]. Industry and Mine Automation,2019,45(7):38-42,65.
    [12]
    王光辉. 煤泥浮选过程模型仿真及控制研究[D]. 徐州: 中国矿业大学, 2012.

    WANG Guanghui. Model simulation and control of coal slurry flotation process[D]. Xuzhou: China University of Mining and Technology, 2012.
    [13]
    高博. 基于图像灰度特征的浮选尾矿灰分软测量研究[D]. 徐州: 中国矿业大学, 2016.

    GAO Bo. Study on soft-sensing model for ash measurement of floatation tailings based on gray features of image[D]. Xuzhou: China University of Mining and Technology, 2016.
    [14]
    包玉奇,杨洁明. 基于机器视觉的浮选尾矿灰分检测[J]. 煤炭技术,2015,34(9):313-316.

    BAO Yuqi,YANG Jieming. Flotation tailings ash detection based on machine vision[J]. Coal Technology,2015,34(9):313-316.
    [15]
    王靖千,王然风,付翔,等. 基于彩色图像处理的浮选尾煤灰分软测量研究[J]. 煤炭工程,2020,52(3):137-142.

    WANG Jingqian,WANG Ranfeng,FU Xiang,et al. Study on soft sensing of ash content in flotation tail coal based on color image processing[J]. Coal Engineering,2020,52(3):137-142.
    [16]
    WANG Guichao,FENG Dongxia,NGUYEN A,et al. The dynamic contact angle of a bubble with an immersed-in-water particle and its implications for bubble-particle detachment[J]. International Journal of Mineral Processing,2016,151:22-32. DOI: 10.1016/j.minpro.2016.04.001
    [17]
    周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.

    ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.
    [18]
    焦李成,杨淑媛,刘芳,等. 神经网络七十年:回顾与展望[J]. 计算机学报,2016,39(8):1697-1716.

    JIAO Licheng,YANG Shuyuan,LIU Fang,et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers,2016,39(8):1697-1716.
    [19]
    周博文,王然风,付翔. 基于浮选尾煤图像的灰分检测试验研究[J]. 矿业研究与开发,2021,41(8):172-177.

    ZHOU Bowen,WANG Ranfeng,FU Xiang. Experimental research on ash content detection based on coal flotation tailings images[J]. Mining Research and Development,2021,41(8):172-177.
    [20]
    SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks,2015,61:85-117. DOI: 10.1016/j.neunet.2014.09.003
    [21]
    徐睿,梁循,齐金山,等. 极限学习机前沿进展与趋势[J]. 计算机学报,2019,42(7):1640-1670.

    XU Rui,LIANG Xun,QI Jinshan,et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers,2019,42(7):1640-1670.
  • Related Articles

    [1]TAO Long, GUO Yanfei. Feature extraction of coal mine ventilator vibration signals based on improved variational mode decomposition[J]. Journal of Mine Automation, 2025, 51(2): 131-137. DOI: 10.13272/j.issn.1671-251x.2024120015
    [2]WANG Zhongqiang, LI Zhonghui, ZHANG Xin, ZANG Zesheng, ZHANG Quancong, WANG Xuebing. Study on variation law and mechanism of coal potential signal with different lithology[J]. Journal of Mine Automation, 2022, 48(2): 131-137. DOI: 10.13272/j.issn.1671-251x.2021100018
    [3]DANG Weichao, SHI Yunlong, BAI Shangwang, GAO Gaimei, LIU Chunxia. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Journal of Mine Automation, 2021, 47(12): 98-105. DOI: 10.13272/j.issn.1671-251x.2021030087
    [4]LIU Tianqi. Research on the minimum ignition temperature variation law of coal dust cloud with different coal quality[J]. Journal of Mine Automation, 2019, 45(9): 80-85. DOI: 10.13272/j.issn.1671-251x.2018120078
    [5]JIANG Zilong, CHEN Wenlong, LIU Youjian. Research on variation law of secondary stress on working face of Guotun Coal Mine[J]. Journal of Mine Automation, 2017, 43(4): 18-21. DOI: 10.13272/j.issn.1671-251x.2017.04.005
    [6]KONG Yanhui, LI Zhonghui, QIU Liming, SHEN Rongxi. Research on variation rule of surface potential of coal rock during water-inrush process[J]. Journal of Mine Automation, 2017, 43(1): 38-42. DOI: 10.13272/j.issn.1671-251x.2017.01.010
    [7]LYU Ganggang, SHEN Rongxi, QIU Liming, ZHAO Cong, QI Jinxing, WANG Jinghao. Experimental research of variation characteristics of electromagnetic radiation, acoustic emission and surface electric potential during water inrush in mine floor[J]. Journal of Mine Automation, 2015, 41(10): 16-19. DOI: 10.13272/j.issn.1671-251x.2015.10.005
    [8]DU Chunlei, ZHANG Xueying, LI Fenglia. Application of improved CART algorithm in prediction of water inrush from coal seam floor[J]. Journal of Mine Automation, 2014, 40(12): 52-56. DOI: 10.13272/j.issn.1671-251x.2014.12.014
    [9]LIANG Xiang-hong~, ZHANG Qin~. Design of CAN Interface of Mine-used Communication Substation Based on ARM[J]. Journal of Mine Automation, 2009, 35(3): 4-7.
    [10]ZHAO Cang-rong, ZHOU Meng-ra. Underground Gas Monitoring and Control System with CAN Bus Based on ARM[J]. Journal of Mine Automation, 2008, 34(6): 13-16.
  • Cited by

    Periodical cited type(2)

    1. 陈伟,陈志良,侯强. 煤矿井下液压锚杆钻机钻臂定位控制方法. 自动化与仪表. 2024(08): 29-33+39 .
    2. 李富强. 锚杆钻车施工影响因素分析. 中国机械. 2023(33): 90-93 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (812) PDF downloads (30) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return