MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072
Citation: MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072

Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm

More Information
  • In view of problems of large amount of calculation, low real-time performance and low positioning accuracy of existing fingerprint-based underground positioning algorithm, underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm was proposed. Bisecting k-means clustering algorithm is used to classify collected RSSI data to establish an offline fingerprint database. Real time RSSI values are collected by wireless mobile terminal and dynamic corrector and stored in online positioning database and dynamic correction database respectively. According to offline data and real-time data, weight value is calculated using software and hardware dynamic correction weighted K-nearest neighbor algorithm, and real-time position is estimated by combining the physical location information of the point to be measured in the offline fingerprint database. The example analysis results show that the minimum standard error of the proposed positioning algorithm is 0.46 m, the maximum standard error is 3.26 m, and the average error is 1.62 m. The results of comparative analysis show that the proposed algorithm has higher precision and better real-time performance than the algorithm without clustering analysis. Compared with the algorithm without dynamic correction of weights, the computation time of the proposed algorithm is slightly increased, but the positioning accuracy is increased by 37.21%.
  • Related Articles

    [1]LIU Jing, WEI Zhiqiang, CAI Chunmeng, LIU Yang. Positioning method for roadheaders based on fusion of LiDAR and inertial navigation[J]. Journal of Mine Automation, 2025, 51(3): 78-85, 95. DOI: 10.13272/j.issn.1671-251x.2025010021
    [2]HE Jianwei. Research on the positioning method of continuous shearer in coal mines[J]. Journal of Mine Automation, 2021, 47(10): 42-48. DOI: 10.13272/j.issn.1671-251x.2020120011
    [3]YANG Lin, MA Hongwei, WANG Yan, WANG Chuanwei, ZHANG Zhenzhen. Research on method of simultaneous localization and mapping of coal mine inspection robot[J]. Journal of Mine Automation, 2019, 45(9): 18-24. DOI: 10.13272/j.issn.1671-251x.17444
    [4]TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Journal of Mine Automation, 2019, 45(8): 70-73. DOI: 10.13272/j.issn.1671-251x.2019010033
    [5]DU Jingyi, GUO Jinbao, ZHANG Bo. Inertial navigation and positioning system for underground driverless trai[J]. Journal of Mine Automation, 2018, 44(9): 5-9. DOI: 10.13272/j.issn.1671-251x.2018040022
    [6]ZHANG Shouxiang, LI Sen, SONG Lailiang. Positioning of coal mining equipments based on inertial navigation and odometer[J]. Journal of Mine Automation, 2018, 44(5): 52-57. DOI: 10.13272/j.issn.1671-251x.2018010042
    [7]JIANG Lei, YANG Liuming, WU Fangda, HAN Huijie, ZHOU Xue. Underground positioning method based on GMapping algorithm and fingerprint map constructio[J]. Journal of Mine Automation, 2017, 43(9): 96-101. DOI: 10.13272/j.issn.1671-251x.2017.09.017
    [8]TIAN Yuan. Present situation and development direction of navigation technology of boom-type roadheader[J]. Journal of Mine Automation, 2017, 43(8): 37-43. DOI: 10.13272/j.issn.1671-251x.2017.08.008
    [9]WANG Zhenghe. Trajectory generation algorithm of inertial navigation based on smart phone[J]. Journal of Mine Automation, 2015, 41(5): 87-90. DOI: 10.13272/j.issn.1671-251x.2015.05.021
    [10]LI Lu, MA Shao-yi. Construction of Mine-map Graph Correction System Based on MapX[J]. Journal of Mine Automation, 2009, 35(11): 115-116.
  • Cited by

    Periodical cited type(9)

    1. 曹建东. 煤矿综采工作面采煤机截割系统方案设计与应用. 机械管理开发. 2022(06): 227-228+231 .
    2. 宋单阳,杨金衡,陶心雅,卢春贵,田慕琴,宋建成. 基于非完整性约束的采煤机定位方法. 工矿自动化. 2022(07): 52-57 . 本站查看
    3. 武元军. 薄煤层综采工作面采煤机组合定位方法研究. 矿业装备. 2021(03): 216-217 .
    4. 杨金衡,宋单阳,田慕琴,宋建成,许春雨. 基于自适应卡尔曼滤波的双惯导采煤机定位方法. 工矿自动化. 2021(07): 14-20+28 . 本站查看
    5. 任广玉. 大采高智能化综采工作面设备配套工艺研究. 自动化应用. 2021(03): 122-123+127 .
    6. 任怀伟,赵国瑞,周杰,文治国,丁艳,李帅帅. 智能开采装备全位姿测量及虚拟仿真控制技术. 煤炭学报. 2020(03): 956-971 .
    7. 王守波. 综放工作面采煤工艺可靠性研究. 中国设备工程. 2020(13): 131-132 .
    8. 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望. 煤炭科学技术. 2020(09): 218-226 .
    9. 胡光军,廖洪波,兰利平,吴寻云. 极近距离极薄煤层软顶控制技术优化. 矿业工程研究. 2020(04): 6-12 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (64) PDF downloads (16) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return