LI Zhongzhong, LIU Qing, LIU Junfeng, et al. Automation software design and application for fully mechanized working face[J]. Journal of Mine Automation,2023,49(3):124-130. DOI: 10.13272/j.issn.1671-251x.2022080078
Citation: LI Zhongzhong, LIU Qing, LIU Junfeng, et al. Automation software design and application for fully mechanized working face[J]. Journal of Mine Automation,2023,49(3):124-130. DOI: 10.13272/j.issn.1671-251x.2022080078

Automation software design and application for fully mechanized working face

More Information
  • Received Date: August 28, 2022
  • Revised Date: February 24, 2023
  • Available Online: October 11, 2022
  • In view of the demand for efficient mining of fully mechanized working face, the lack of automation software products in the mining process, the lack of industry pertinence of general industrial configuration software, the variety of equipment interface protocols and the lack of adaptability to business scenes, a design scheme of automation software for fully mechanized working face is proposed. The automation software of fully mechanized working face comprises a three-layer structure of an underground server, a ground server and a ground client. The underground server is the foundation of the whole architecture, which is composed of a driver layer, a database module, a model logic layer and a data visualization layer. The driver layer is responsible for accessing all kinds of equipment and communication protocols adapted to the working face, and realizing real-time two-way communication with each piece of equipment. The database module comprises a real-time database and a historical database. The real-time database provides real-time read-write service for the driver layer, and the historical database provides data recording service for the driver layer. The data model of the fully mechanized working face is constructed according to the business scene of coal mining. The logic layer of the model is used to solve the problem of lack of industry pertinence and adaptability of software. The model logic layer realizes real-time uploading of equipment data and real-time issuing of control instructions through interaction with the equipment layer. The layer provides data drive for data visualization. The layer completes collaborative control and data analysis functions of various equipment through loading control analysis components. The data visualization layer integrates a variety of data display technologies to facilitate the multi-dimensional display of data. The practical application results show the following points. ① In the aspect of auxiliary production, after the application of the automation software, the continuous online real-time monitoring of working condition information and equipment state of the working face can be realized. The remote centralized control of the working face equipment is supported. The number of underground operators who need to be on duty near each piece of equipment is reduced to two persons in the monitoring center for remote centralized monitoring. This effectively reduces the number of operators. ② In the advanced application of automation, after the application of the automation software, the data of each system is classified and fused. The automatic collaborative control function of multiple types of equipment is realized. The automation level of the fully mechanized working face is improved.
  • [1]
    李全生. 我国井工煤矿开采技术现状和发展展望[J]. 煤矿开采,2002,7(3):1-5. DOI: 10.3969/j.issn.1006-6225.2002.03.001

    LI Quansheng. Present situation of underground coal mining technology and its prospects in China[J]. Coal Mining Technology,2002,7(3):1-5. DOI: 10.3969/j.issn.1006-6225.2002.03.001
    [2]
    张世龙,张民波,朱仁豪,等. 近5年我国煤矿事故特征分析及防治对策[J]. 煤炭与化工,2021,44(8):101-106,109.

    ZHANG Shilong,ZHANG Minbo,ZHU Renhao,et al. Analysis of the characteristics of China's mine accidents in the past five years and countermeasures for prevention and control[J]. Coal and Chemical Industry,2021,44(8):101-106,109.
    [3]
    张胜利,汤家轩,王猛. “双碳”背景下我国煤炭行业发展面临的挑战与机遇[J]. 中国煤炭,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001

    ZHANG Shengli,TANG Jiaxuan,WANG Meng. Challenges and opportunities for the development of China's coal industry under the background of carbon peak and carbon neutrality[J]. China Coal,2022,48(5):1-5. DOI: 10.3969/j.issn.1006-530X.2022.05.001
    [4]
    李浩荡. 减碳背景下煤炭如何直面挑战[N]. 中国煤炭报, 2021-04-01(2).

    LI Haodang. How to face the challenges in the context of carbon reduction[N]. China Coal News, 2021-04-01(2).
    [5]
    王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术,2010,38(1):63-68,106.

    WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J]. Coal Science and Technology,2010,38(1):63-68,106.
    [6]
    葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463.

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463.
    [7]
    刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

    LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1-15.
    [8]
    王峰. 综采无人工作面自动化开采技术研究与应用[J]. 工矿自动化,2015,41(7):5-9.

    WANG Feng. Research and application of automatic mining technology of unmanned fully-mechanized coal mining face[J]. Industry and Mine Automation,2015,41(7):5-9.
    [9]
    丁琰. 煤矿安全生产监控与通信技术分析[J]. 矿业装备,2021(4):182-183. DOI: 10.3969/j.issn.2095-1418.2021.04.090

    DING Yan. Analysis of safety production monitoring and communication technology in coal mine[J]. Mining Equipment,2021(4):182-183. DOI: 10.3969/j.issn.2095-1418.2021.04.090
    [10]
    王国法. 煤矿综采自动化成套技术与装备创新和发展[J]. 煤炭科学技术,2013,41(11):1-5,9.

    WANG Guofa. Innovation and development on automatic completed set technology and equipment of fully-mechanized coal mining face[J]. Coal Science and Technology,2013,41(11):1-5,9.
    [11]
    任怀伟,赵国瑞,周杰,等. 智能开采装备全位姿测量及虚拟仿真控制技术[J]. 煤炭学报,2020,45(3):956-971.

    REN Huaiwei,ZHAO Guorui,ZHOU Jie,et al. Key technologies of all position and orientation monitoring and virtual simulation and control for smart mining equipment[J]. Journal of China Coal Society,2020,45(3):956-971.
    [12]
    田成金. 可视化远程干预型智能化采煤关键控制技术研究[J]. 煤炭科学技术,2016,44(7):97-102.

    TIAN Chengjin. Study on key control technology of visualized remote interference type intelligent mining[J]. Coal Science and Technology,2016,44(7):97-102.
    [13]
    刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48.

    LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperrative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48.
    [14]
    路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.

    LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
    [15]
    李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39.

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39.
    [16]
    黄曾华. 综采装备单机智能化向智能协同模式转型的探索研究[J]. 煤炭科学技术,2021,49(4):169-175.

    HUANG Zenghua. Exploration and research on transformation from intelligent single machine equipment to intelligent synergy in coal mine[J]. Coal Science and Technology,2021,49(4):169-175.
    [17]
    葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774-788. DOI: 10.13225/j.cnki.jccs.yt21.0114

    GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774-788. DOI: 10.13225/j.cnki.jccs.yt21.0114
    [18]
    冯银辉,黄曾华,李昊. 互联网+综采自动化专家决策平台设计与应用[J]. 煤炭科学技术,2016,44(7):73-79.

    FENG Yinhui,HUANG Zenghua,LI Hao. Design and application of internet plus experts decision making platform to fully-mechanized mining automation[J]. Coal Science and Technology,2016,44(7):73-79.
    [19]
    杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
    [20]
    葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327

    GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
  • Related Articles

    [1]WANG Hongwei, YANG Kun, FU Xiang, LI Jin, JIA Sifeng. Massive data mining and analysis platform design for fully mechanized working face[J]. Journal of Mine Automation, 2023, 49(5): 30-36, 126. DOI: 10.13272/j.issn.1671-251x.18088
    [2]CHEN Huaying, DU Zhigang, SONG Xingjia. Design of mine integrated dispatching management and control platform[J]. Journal of Mine Automation, 2022, 48(8): 122-126. DOI: 10.13272/j.issn.1671-251x.17965
    [3]GU Baoze, QIU Shaojie. Discussion on key technologies for transparent mine constructio[J]. Journal of Mine Automation, 2021, 47(S1): 24-25.
    [4]ZHANG Peng. Exploration on construction of big data system for intelligent mine[J]. Journal of Mine Automation, 2021, 47(S1): 21-23.
    [5]PU Yang, SONG Zhiqiang, NING Xiaoliang. Construction and application of multivariate data visualization system for coal and gas outburst predictio[J]. Journal of Mine Automation, 2020, 46(7): 64-69. DOI: 10.13272/j.issn.1671-251x.2020020054
    [6]TAN Zhanglu, WU Qi, XIAO Yixuan, WANG Zhen, LI Shuo. Research on information visualization of smart mine[J]. Journal of Mine Automation, 2020, 46(1): 26-31. DOI: 10.13272/j.issn.1671-251x.2019040065
    [7]MA Hongwei, WU Shaojie, CAO Xiangang, XU Boyuan, ZHANG Xinyua. Big data cleaning modeling of operation status of coal mine fully—mechanized coal mining equipment[J]. Journal of Mine Automation, 2018, 44(11): 80-83. DOI: 10.13272/j.issn.1671—251x.2018040090
    [8]CHENG Donghao, HUN Baoju, JIN Kai. Application prospect analysis of augmented reality technology in mine ventilation system[J]. Journal of Mine Automation, 2018, 44(8): 10-14. DOI: 10.13272/j.issn.1671-251x.2018010021
    [9]TAN Zhanglu, MA Yingying, YUAN Hui. Key technologies and management collaborative architecture of construction of coal big data platform[J]. Journal of Mine Automation, 2018, 44(6): 16-20. DOI: 10.13272/j.issn.1671-251x.2018010014
    [10]TANG Fu-quan, WANG Gui-sheng, DAI Ju-peng. Application of Surfer8.0 in Visualization Expression and Mapping of Mining Subsidence Data[J]. Journal of Mine Automation, 2010, 36(10): 67-69.
  • Cited by

    Periodical cited type(9)

    1. 王辉,吴早阳,西成峰,唐博. 基于组态架构的综采工作面综合管控平台设计与应用. 煤矿机械. 2025(01): 208-213 .
    2. 郭资鉴,李俊士,冯银辉,张勇. 综采自动化控制系统测试方法研究与应用. 煤炭技术. 2025(02): 178-181 .
    3. 索智文,梁占泽,吴宇鹏,马艺珂,蔡东. 煤矿采煤工作面找直系统设计与应用. 煤矿机械. 2025(03): 164-167 .
    4. 郭资鉴. 基于PLC和上位机的乳化液泵测控系统设计. 煤矿机械. 2024(09): 24-26 .
    5. 武瑞杰,宋晓锋,张继承,杜和军,陈胜法,晏增翔. 基于矿鸿的自动风门控制系统研发. 当代化工研究. 2024(21): 185-187 .
    6. 张磊,李绍良,曲越. 煤矿采煤工作面数字孪生系统研究与应用. 山东煤炭科技. 2024(12): 173-176+182 .
    7. 王宏伟,杨焜,付翔,李进,贾思锋. 综采工作面海量数据挖掘分析平台设计. 工矿自动化. 2023(05): 30-36+126 . 本站查看
    8. 刘海锋. 露天煤矿智能化建设关键技术研究. 工矿自动化. 2023(S2): 107-111 . 本站查看
    9. 杨鹏,刘碧波,孟亚光. 矿鸿操作系统在综采工作面中的应用研究. 信息与电脑(理论版). 2023(19): 95-97 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (834) PDF downloads (37) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return