Automation software design and application for fully mechanized working face
-
Graphical Abstract
-
Abstract
In view of the demand for efficient mining of fully mechanized working face, the lack of automation software products in the mining process, the lack of industry pertinence of general industrial configuration software, the variety of equipment interface protocols and the lack of adaptability to business scenes, a design scheme of automation software for fully mechanized working face is proposed. The automation software of fully mechanized working face comprises a three-layer structure of an underground server, a ground server and a ground client. The underground server is the foundation of the whole architecture, which is composed of a driver layer, a database module, a model logic layer and a data visualization layer. The driver layer is responsible for accessing all kinds of equipment and communication protocols adapted to the working face, and realizing real-time two-way communication with each piece of equipment. The database module comprises a real-time database and a historical database. The real-time database provides real-time read-write service for the driver layer, and the historical database provides data recording service for the driver layer. The data model of the fully mechanized working face is constructed according to the business scene of coal mining. The logic layer of the model is used to solve the problem of lack of industry pertinence and adaptability of software. The model logic layer realizes real-time uploading of equipment data and real-time issuing of control instructions through interaction with the equipment layer. The layer provides data drive for data visualization. The layer completes collaborative control and data analysis functions of various equipment through loading control analysis components. The data visualization layer integrates a variety of data display technologies to facilitate the multi-dimensional display of data. The practical application results show the following points. ① In the aspect of auxiliary production, after the application of the automation software, the continuous online real-time monitoring of working condition information and equipment state of the working face can be realized. The remote centralized control of the working face equipment is supported. The number of underground operators who need to be on duty near each piece of equipment is reduced to two persons in the monitoring center for remote centralized monitoring. This effectively reduces the number of operators. ② In the advanced application of automation, after the application of the automation software, the data of each system is classified and fused. The automatic collaborative control function of multiple types of equipment is realized. The automation level of the fully mechanized working face is improved.
-
-