Volume 49 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
YIN Yuxi, ZHOU Changfei, XU Zhipeng, et al. Research on coal and rock recognition model based on improved 1DCNN[J]. Journal of Mine Automation,2023,49(1):116-122.  doi: 10.13272/j.issn.1671-251x.2022080051
Citation: YIN Yuxi, ZHOU Changfei, XU Zhipeng, et al. Research on coal and rock recognition model based on improved 1DCNN[J]. Journal of Mine Automation,2023,49(1):116-122.  doi: 10.13272/j.issn.1671-251x.2022080051

Research on coal and rock recognition model based on improved 1DCNN

doi: 10.13272/j.issn.1671-251x.2022080051
  • Received Date: 2022-08-18
  • Rev Recd Date: 2022-12-29
  • Available Online: 2022-09-07
  • With the acceleration of intelligent construction of coal mines, efficient recognition of coal and rock has become a technical problem to be solved urgently in intelligent coal mining. The existing coal and rock recognition methods under complex coal mine geological conditions have problems of low precision, poor universality and are difficult to apply in engineering. In order to solve the above problems, a coal and rock recognition model based on improved 1-dimensional convolutional neural network (1DCNN) is proposed. Based on the 1DCNN, a plurality of continuous convolution layers are used for extracting one-dimensional vibration signal features. The global average pool (GAP) layer is used for replacing the full connection layer. The model training parameters are reduced, and computing resources are saved. At the same time, a cosine annealing attenuation method with a linear hot start is adopted for optimizing the learning rate. Therefore, the model training is prevented from falling into a local minimum region, and the training quality is improved. In order to intuitively describe the feature extraction process and classification capability of the improved 1DCNN model for coal and rock cutting vibration data, the t-distributed stochastic neighbor embedding (t-SNE) manifold learning algorithm is used to visually analyze the feature learning process of the model. The results show that the improved 1DCNN model can realize the recognition of coal and rock cutting states well through feature learning layer by layer. Based on the measured vibration data obtained in the process of coal and rock cutting of the MG 650/1590-WD shearer in a mine in Shaanxi province, the model is trained and the result shows that the accuracy of the improved 1DCNN model is 99.91% on the training set and 99.32% on the test set. The model can be directly used to classify the original vibration signals of the shearer in coal and rock cutting, and can effectively identify the cutting state of coal and rock. Compared with traditional machine learning, ensemble learning and the unmodified 1DCNN model, the improved 1DCNN model has obvious advantages. The average recognition accuracy rate reaches 99.56%. The calculation cost is greatly saved, and the model recognition speed is improved.

     

  • loading
  • [1]
    张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26.

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
    [2]
    王增才,王汝琳,徐建华,等. 自然 $ \text{γ} $ 射线法在采煤机摇臂自动调高中检测煤层厚度的研究[J]. 煤炭学报,2002,27(4):425-429. doi: 10.3321/j.issn:0253-9993.2002.04.020

    WANG Zengcai,WANG Rulin,XU Jianhua,et al. Research on coal seam thickness detection by natural Gamma ray in shearer horizon control[J]. Journal of China Coal Society,2002,27(4):425-429. doi: 10.3321/j.issn:0253-9993.2002.04.020
    [3]
    王昕,丁恩杰,胡克想,等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报,2016,45(1):34-41. doi: 10.13247/j.cnki.jcumt.000455

    WANG Xin,DING Enjie,HU Kexiang,et al. Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J]. Journal of China University of Mining & Technology,2016,45(1):34-41. doi: 10.13247/j.cnki.jcumt.000455
    [4]
    张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363-3370.

    ZHANG Qiang,SUN Shao'an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363-3370.
    [5]
    苗曙光,邵丹,刘忠育,等. 基于太赫兹时域光谱技术的煤岩识别方法研究[J]. 光谱学与光谱分析,2022,42(6):1755-1760. doi: 10.3964/j.issn.1000-0593(2022)06-1755-06

    MIAO Shuguang,SHAO Dan,LIU Zhongyu,et al. Study on coal-rock identification method based on terahertz time-domain spectroscopy[J]. Spectroscopy and Spectral Analysis,2022,42(6):1755-1760. doi: 10.3964/j.issn.1000-0593(2022)06-1755-06
    [6]
    杨恩,王世博,宣统. 融合近红外光谱的煤岩界面分布感知研究[J]. 工矿自动化,2022,48(7):22-31,42. doi: 10.13272/j.issn.1671-251x.17950

    YANG En,WANG Shibo,XUAN Tong. Research on coal-rock interface distribution perception based on near-infrared spectra[J]. Journal of Mine Automation,2022,48(7):22-31,42. doi: 10.13272/j.issn.1671-251x.17950
    [7]
    孙传猛,王燕平,王冲,等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法[J]. 采矿与岩层控制工程学报,2022,4(1):81-90.

    SUN Chuanmeng,WANG Yanping,WANG Chong,et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation[J]. Journal of Mining and Strata Control Engineering,2022,4(1):81-90.
    [8]
    ZHANG Qiang, GU Jieying, LIU Junming. Research on coal and rock type recognition based on mechanical vision[J]. Shock and Vibration, 2021. DOI: 10.1155/2021/6617717.
    [9]
    刘春生,刘延婷,刘若涵,等. 采煤机截割状态与煤岩识别的关联载荷特征模型[J]. 煤炭学报,2022,47(1):527-540.

    LIU Chunsheng,LIU Yanting,LIU Ruohan,et al. Correlation load characteristic model between shearer cutting state and coal-rock recognition[J]. Journal of China Coal Society,2022,47(1):527-540.
    [10]
    赵丽娟,王雅东,张美晨,等. 复杂煤层条件下采煤机自适应截割控制策略[J]. 煤炭学报,2022,47(1):541-563. doi: 10.13225/j.cnki.jccs.yg21.1862

    ZHAO Lijuan,WANG Yadong,ZHANG Meichen,et al. Research on self-adaptive cutting control strategy of shearer in complex coal seam[J]. Journal of China Coal Society,2022,47(1):541-563. doi: 10.13225/j.cnki.jccs.yg21.1862
    [11]
    张启志,邱锦波,庄德玉. 基于倒谱距离的采煤机煤岩截割振动信号识别[J]. 工矿自动化,2017,43(1):9-12. doi: 10.13272/j.issn.1671-251x.2017.01.003

    ZHANG Qizhi,QIU Jinbo,ZHUANG Deyu. Vibration signal identification of coal-rock cutting of shearer based on cepstral distance[J]. Industry and Mine Automation,2017,43(1):9-12. doi: 10.13272/j.issn.1671-251x.2017.01.003
    [12]
    周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251. doi: 10.11897/SP.J.1016.2017.01229

    ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251. doi: 10.11897/SP.J.1016.2017.01229
    [13]
    陈鹏,赵小强. 一种改进1DCNN的滚动轴承变工况故障诊断方法[J]. 轴承,2022(5):65-69. doi: 10.19533/j.issn1000-3762.2022.05.014

    CHEN Peng,ZHAO Xiaoqiang. An improved 1DCNN fault diagnosis method for rolling bearings under variable conditions[J]. Bearing,2022(5):65-69. doi: 10.19533/j.issn1000-3762.2022.05.014
    [14]
    刘云飞, 张俊然. 深度神经网络学习率策略研究进展[J/OL]. 控制与决策: 1-15[2022-08-18]. DOI: 10.13195/j.kzyjc.2022.0147.

    LIU Yunfei, ZHANG Junran. Research advances in deep neural networks learning rate strategies[J/OL]. Control and Decision: 1-15[2022-08-18]. DOI: 10.13195/j.kzyjc.2022.0147.
    [15]
    陈琼,谢家亮. 基于自适应采样的不平衡分类方法[J]. 华南理工大学学报(自然科学版),2022,50(4):26-34,45.

    CHEN Qiong,XIE Jialiang. An imbalanced classification method based on adaptive sampling[J]. Journal of South China University of Technology (Natural Science Edition),2022,50(4):26-34,45.
    [16]
    徐卫鹏, 徐冰. 基于卷积神经网络的轴承故障诊断研究[J]. 山东科技大学学报(自然科学版), 2021, 40(6): 121-128.

    XU Weipeng, XU Bing. Study on bearing fault diagnosis based on convolution neural network[J]. Journal of Shandong University of Science and Technology(Natural Science), 2021, 40(6): 121-128.
    [17]
    陈剑,程明. 基于tSNE−ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断[J]. 电子测量与仪器学报,2022,36(4):195-204. doi: 10.13382/j.jemi.B2104696

    CHEN Jian,CHENG Ming. Fault diagnosis of rolling bearing acoustic vibration signal based on tSNE-ASC feature selection and DSmT evidence fusion[J]. Journal of Electronic Measurement and Instrumentation,2022,36(4):195-204. doi: 10.13382/j.jemi.B2104696
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (877) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return