Citation: | YIN Yuxi, ZHOU Changfei, XU Zhipeng, et al. Research on coal and rock recognition model based on improved 1DCNN[J]. Journal of Mine Automation,2023,49(1):116-122. doi: 10.13272/j.issn.1671-251x.2022080051 |
[1] |
张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26.
ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
|
[2] |
王增才,王汝琳,徐建华,等. 自然
WANG Zengcai,WANG Rulin,XU Jianhua,et al. Research on coal seam thickness detection by natural Gamma ray in shearer horizon control[J]. Journal of China Coal Society,2002,27(4):425-429. doi: 10.3321/j.issn:0253-9993.2002.04.020
|
[3] |
王昕,丁恩杰,胡克想,等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报,2016,45(1):34-41. doi: 10.13247/j.cnki.jcumt.000455
WANG Xin,DING Enjie,HU Kexiang,et al. Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J]. Journal of China University of Mining & Technology,2016,45(1):34-41. doi: 10.13247/j.cnki.jcumt.000455
|
[4] |
张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363-3370.
ZHANG Qiang,SUN Shao'an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363-3370.
|
[5] |
苗曙光,邵丹,刘忠育,等. 基于太赫兹时域光谱技术的煤岩识别方法研究[J]. 光谱学与光谱分析,2022,42(6):1755-1760. doi: 10.3964/j.issn.1000-0593(2022)06-1755-06
MIAO Shuguang,SHAO Dan,LIU Zhongyu,et al. Study on coal-rock identification method based on terahertz time-domain spectroscopy[J]. Spectroscopy and Spectral Analysis,2022,42(6):1755-1760. doi: 10.3964/j.issn.1000-0593(2022)06-1755-06
|
[6] |
杨恩,王世博,宣统. 融合近红外光谱的煤岩界面分布感知研究[J]. 工矿自动化,2022,48(7):22-31,42. doi: 10.13272/j.issn.1671-251x.17950
YANG En,WANG Shibo,XUAN Tong. Research on coal-rock interface distribution perception based on near-infrared spectra[J]. Journal of Mine Automation,2022,48(7):22-31,42. doi: 10.13272/j.issn.1671-251x.17950
|
[7] |
孙传猛,王燕平,王冲,等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法[J]. 采矿与岩层控制工程学报,2022,4(1):81-90.
SUN Chuanmeng,WANG Yanping,WANG Chong,et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation[J]. Journal of Mining and Strata Control Engineering,2022,4(1):81-90.
|
[8] |
ZHANG Qiang, GU Jieying, LIU Junming. Research on coal and rock type recognition based on mechanical vision[J]. Shock and Vibration, 2021. DOI: 10.1155/2021/6617717.
|
[9] |
刘春生,刘延婷,刘若涵,等. 采煤机截割状态与煤岩识别的关联载荷特征模型[J]. 煤炭学报,2022,47(1):527-540.
LIU Chunsheng,LIU Yanting,LIU Ruohan,et al. Correlation load characteristic model between shearer cutting state and coal-rock recognition[J]. Journal of China Coal Society,2022,47(1):527-540.
|
[10] |
赵丽娟,王雅东,张美晨,等. 复杂煤层条件下采煤机自适应截割控制策略[J]. 煤炭学报,2022,47(1):541-563. doi: 10.13225/j.cnki.jccs.yg21.1862
ZHAO Lijuan,WANG Yadong,ZHANG Meichen,et al. Research on self-adaptive cutting control strategy of shearer in complex coal seam[J]. Journal of China Coal Society,2022,47(1):541-563. doi: 10.13225/j.cnki.jccs.yg21.1862
|
[11] |
张启志,邱锦波,庄德玉. 基于倒谱距离的采煤机煤岩截割振动信号识别[J]. 工矿自动化,2017,43(1):9-12. doi: 10.13272/j.issn.1671-251x.2017.01.003
ZHANG Qizhi,QIU Jinbo,ZHUANG Deyu. Vibration signal identification of coal-rock cutting of shearer based on cepstral distance[J]. Industry and Mine Automation,2017,43(1):9-12. doi: 10.13272/j.issn.1671-251x.2017.01.003
|
[12] |
周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251. doi: 10.11897/SP.J.1016.2017.01229
ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251. doi: 10.11897/SP.J.1016.2017.01229
|
[13] |
陈鹏,赵小强. 一种改进1DCNN的滚动轴承变工况故障诊断方法[J]. 轴承,2022(5):65-69. doi: 10.19533/j.issn1000-3762.2022.05.014
CHEN Peng,ZHAO Xiaoqiang. An improved 1DCNN fault diagnosis method for rolling bearings under variable conditions[J]. Bearing,2022(5):65-69. doi: 10.19533/j.issn1000-3762.2022.05.014
|
[14] |
刘云飞, 张俊然. 深度神经网络学习率策略研究进展[J/OL]. 控制与决策: 1-15[2022-08-18]. DOI: 10.13195/j.kzyjc.2022.0147.
LIU Yunfei, ZHANG Junran. Research advances in deep neural networks learning rate strategies[J/OL]. Control and Decision: 1-15[2022-08-18]. DOI: 10.13195/j.kzyjc.2022.0147.
|
[15] |
陈琼,谢家亮. 基于自适应采样的不平衡分类方法[J]. 华南理工大学学报(自然科学版),2022,50(4):26-34,45.
CHEN Qiong,XIE Jialiang. An imbalanced classification method based on adaptive sampling[J]. Journal of South China University of Technology (Natural Science Edition),2022,50(4):26-34,45.
|
[16] |
徐卫鹏, 徐冰. 基于卷积神经网络的轴承故障诊断研究[J]. 山东科技大学学报(自然科学版), 2021, 40(6): 121-128.
XU Weipeng, XU Bing. Study on bearing fault diagnosis based on convolution neural network[J]. Journal of Shandong University of Science and Technology(Natural Science), 2021, 40(6): 121-128.
|
[17] |
陈剑,程明. 基于tSNE−ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断[J]. 电子测量与仪器学报,2022,36(4):195-204. doi: 10.13382/j.jemi.B2104696
CHEN Jian,CHENG Ming. Fault diagnosis of rolling bearing acoustic vibration signal based on tSNE-ASC feature selection and DSmT evidence fusion[J]. Journal of Electronic Measurement and Instrumentation,2022,36(4):195-204. doi: 10.13382/j.jemi.B2104696
|