Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
QIN Ruxiang, XU Shaowei, HOU Shuhong, et al. Borehole detection test of primary CO in coal seam[J]. Industry and Mine Automation,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043
Citation: QIN Ruxiang, XU Shaowei, HOU Shuhong, et al. Borehole detection test of primary CO in coal seam[J]. Industry and Mine Automation,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043

Borehole detection test of primary CO in coal seam

doi: 10.13272/j.issn.1671-251x.2021070043
  • Received Date: 2021-07-15
  • Accepted Date: 2022-01-03
  • Rev Recd Date: 2021-12-29
  • Publish Date: 2022-01-20
  • At present, many studies have come to the conclusion that the coal seam contains primary CO gas, but the possibility of CO being adsorbed by coal after CO generated in drilling construction is not considered. In order to explore whether there is primary CO in spontaneous combustion coal seam in Northwest China, the original coal seam in-situ drilling detection method is used to detect primary CO. Three test boreholes are arranged in a row along the roadway side in the solid coal area not affected by mining. After the boreholes are sealed, high-purity N2 is used to replace the gas in the closed gas chamber, and the gas in the boreholes is extracted by a special air pump, so as to eliminate the impact of CO generated by coal oxidation on the test results during the construction of in-situ detection boreholes. On the basis of analyzing the source possibility of primary CO in coal seam and its emission theory, the variation characteristics of gas concentration in closed borehole with time are discussed. The results show that volume fraction of O2 and CO in the sealed borehole decrease rapidly with the extension of sealing time, and the volume fraction of O2 is stable below 2% after 12 days. After 12 days, the CO volume fraction is lower than 10−12, and no CO gas is detected by gas chromatograp. The gas in the borehole is mainly N2. It is concluded that there is no primary CO gas in the tested coal seam. The results of coal breaking test in N2 environment and coal sample oxidation test at normal temperature and constant temperature show that CO gas detected at the initial stage of borehole sealing comes from coal breaking operation in drilling construction.

     

  • loading
  • [1]
    邓军, 李青蔚, 肖旸, 等. 原煤和氧化煤的低温氧化特性[J]. 西安科技大学学报,2018,38(1):1-7.

    DENG Jun, LI Qingwei, XIAO Yang, et al. Characteristics of low-temperature oxidation of raw and oxidized coals[J]. Journal of Xi'an University of Science and Technology,2018,38(1):1-7.
    [2]
    朱令起, 周心权, 谢建国, 等. 自然发火标志气体实验分析及优化选择[J]. 采矿与安全工程学报,2008,25(4):440-443. doi: 10.3969/j.issn.1673-3363.2008.04.013

    ZHU Lingqi, ZHOU Xinquan, XIE Jianguo, et al. Analysis of indicator gas of spontaneous combustion and its optimal selection[J]. Journal of Mining & Safety Engineering,2008,25(4):440-443. doi: 10.3969/j.issn.1673-3363.2008.04.013
    [3]
    杨鹏, 庄恒超. 西川煤矿工作面上隅角CO来源分析研究[J]. 煤炭工程,2018,50(1):100-104. doi: 10.11799/ce201801028

    YANG Peng, ZHUANG Hengchao. Source analysis of CO in working face upper corner of Xichuan Coal Mine[J]. Coal Engineering,2018,50(1):100-104. doi: 10.11799/ce201801028
    [4]
    贾海林, 韩璐璐, 余明高. 煤结构机械破断生成S−CO的规律与机理[J]. 煤炭学报,2017,42(8):2037-2043.

    JIA Hailin, HAN Lulu, YU Minggao. Formation rule and mechanism of S-CO during the mechanical disruption of coal structure[J]. Journal of China Coal Society,2017,42(8):2037-2043.
    [5]
    戴广龙. 煤低温氧化过程中自由基浓度与气体产物之间的关系[J]. 煤炭学报,2012,37(1):122-126.

    DAI Guanglong. Relation between free radicals concentration and gas products in process of coal low temperature oxidation[J]. Journal of China Coal Society,2012,37(1):122-126.
    [6]
    贾海林, 余明高, 徐永亮. 矿井CO气体成因类型及机理辨识分析[J]. 煤炭学报,2013,38(10):1812-1818.

    JIA Hailin, YU Minggao, XU Yongliang. Analysis on the genetic type and mechanism identification of carbon monoxide in the coal mine[J]. Journal of China Coal Society,2013,38(10):1812-1818.
    [7]
    邬剑明, 郭惠宇, 宋金旺, 等. 解吸法测定塔山矿煤层原生CO含量的试验研究[J]. 煤炭科学技术,2010,38(6):54-56.

    WU Jianming, GUO Huiyu, SONG Jinwang, et al. Experiment study on desorption method to measure in-situ CO content of seam in Tashan Mine[J]. Coal Science and Technology,2010,38(6):54-56.
    [8]
    朱令起, 刘聪, 杨帆. 煤层CO来源的试验研究及分析[J]. 煤炭科学技术,2016,44(增刊1):68-71.

    ZHU Lingqi, LIU Cong, YANG Fan. Experimental study and analysis of CO source in coal seams[J]. Coal Science and Technology,2016,44(S1):68-71.
    [9]
    朱红青, 常明然, 王浩然, 等. 煤层原生CO气体存在性研究[J]. 煤炭技术,2017,36(4):139-140.

    ZHU Hongqing, CHANG Mingran, WANG Haoran, et al. Study on existence of coal seam primal CO gas[J]. Coal Technology,2017,36(4):139-140.
    [10]
    MELTON C E, GIARDINI A A. Composition and volume of gas released by crushing coal from West Virginia, Kentucky and Alabama[J]. Fuel,1975,54(3):162-164. doi: 10.1016/0016-2361(75)90004-6
    [11]
    MELTON C E, GIARDINI A A. Composition and volume of gas released by 'melting' coal from West Virginia and Alabama[J]. Fuel,1976,55(2):155-156. doi: 10.1016/0016-2361(76)90013-2
    [12]
    肖藏岩, 韦重韬, 郭立稳, 等. 开滦矿区低级烟煤大分子结构演化特征及CO成因[J]. 煤田地质与勘探,2015,43(2):8-12. doi: 10.3969/j.issn.1001-1986.2015.02.002

    XIAO Cangyan, WEI Chongtao, GUO Liwen, et al. Macromolecule structure evolution and CO origine of low rank bituminous coal in Kailuan mining area[J]. Coal Geology & Exploration,2015,43(2):8-12. doi: 10.3969/j.issn.1001-1986.2015.02.002
    [13]
    余明高, 解俊杰, 贾海林. 机械力作用下煤结构破断CO释放规律及自燃预测指标修正方法[J]. 中国矿业大学学报,2017,46(4):762-768.

    YU Minggao, XIE Junjie, JIA Hailin. Release laws of CO produced by coal structure destruction under mechanical force and modification method of the index for predicting coal spontaneous combustion[J]. Journal of China University of Mining & Technology,2017,46(4):762-768.
    [14]
    许继宗, 李信, 王步青, 等. 大水头煤矿煤层原生CO含量及赋存规律的研究[J]. 矿业安全与环保,2004,31(2):18-20. doi: 10.3969/j.issn.1008-4495.2004.02.007

    XU Jizong, LI Xin, WANG Buqing, et al. Research on original CO content and its occurrence regularity in Dashuitou Coal Mine[J]. Mining Safety & Environmental Protection,2004,31(2):18-20. doi: 10.3969/j.issn.1008-4495.2004.02.007
    [15]
    WANG H, DLUGOGORSKI B Z, KENNEDY E M. Pathways for production of CO2 and CO in low-temperature oxidation of coal[J]. Energy Fuels,2003,17(1):150-158. doi: 10.1021/ef020095l
    [16]
    杨广文, 艾兴. 大雁二矿250综采工作面CO来源的分析及治理[J]. 煤矿安全,2003,34(10):41-43. doi: 10.3969/j.issn.1003-496X.2003.10.017

    YANG Guangwen, AI Xing. Analysis and treatment of CO source in 250 fully mechanized mining face of Dayan No. 2 Mine[J]. Safety in Coal Mines,2003,34(10):41-43. doi: 10.3969/j.issn.1003-496X.2003.10.017
    [17]
    岳克明. 常温常压下煤对CO吸附及解吸特性研究[D]. 徐州: 中国矿业大学, 2014.

    YUE Keming. Study on characteristics of CO adsorption and desorption of coal under normal temperature and pressure[D]. Xuzhou: China University of Mining and Technology, 2014.
    [18]
    汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D]. 徐州: 中国矿业大学, 2020.

    TANG Zongqing. Pore evolution during coal spontaneous combustion: mechanism and its effect on multi-gas adsorption characteristics[D]. Xuzhou: China University of Mining and Technology, 2020.
    [19]
    樊九林. 基于氧同位素法的旬耀矿区原生CO辨识研究[D]. 徐州: 中国矿业大学, 2015.

    FAN Jiulin. Study on identification of original CO in Xunyao mining area based on oxygen isotope method[D]. Xuzhou: China University of Mining and Technology, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (120) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return