Citation: | YAN Honglin. Coal and gangue image classification model based on improved feedback neural network[J]. Journal of Mine Automation,2022,48(8):50-55, 113. doi: 10.13272/j.issn.1671-251x.2022050026 |
[1] |
赵志成,柳群义. 中国能源战略规划研究−基于能源消费、能源生产和能源结构的预测[J]. 资源与产业,2019,21(6):1-8. doi: 10.13776/j.cnki.resourcesindustries.20191206.007
ZHAO Zhicheng,LIU Qunyi. China's energy strategic planning based on prediction of energy consumption,production and structure[J]. Resources & Industry,2019,21(6):1-8. doi: 10.13776/j.cnki.resourcesindustries.20191206.007
|
[2] |
谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960. doi: 10.13225/j.cnki.jccs.2019.0585
XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Chinese Journal of Coal,2019,44(7):1949-1960. doi: 10.13225/j.cnki.jccs.2019.0585
|
[3] |
曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005
CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification methods and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005
|
[4] |
曹现刚,费佳浩,王鹏,等. 基于多机械臂协同的煤矸分拣方法研究[J]. 煤炭科学技术,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002
CAO Xiangang,FEI Jiahao,WANG Peng,et al. Study on coal-gangue sorting method based on multi-manipulator collaboration[J]. Coal Science and Technology,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002
|
[5] |
高新宇. 基于机器视觉的煤矸智能识别分选系统设计[D]. 太原: 太原理工大学, 2021.
GAO Xinyu. Design of intelligent separation system for coal and gangue based on machine vision[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[6] |
孙立新. 基于卷积神经网络的煤矸石识别方法研究[D]. 邯郸: 河北工程大学, 2020.
SUN Lixin. Research on coal gangue recognition method based on convolutional neural network[D]. Handan: Hebei University of Engineering, 2020.
|
[7] |
HE Kaiming, ZHANG Xiangyu, REN Shaoping, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 770-778.
|
[8] |
GAO Huang, ZHUANG Liu, LAURENS V, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 2261-2269.
|
[9] |
PAN Hongguang,SHI Yuhong,LEI Xinyu,et al. Fast identification model for coal and gangue based on the improred ting YoLo v3[J]. Journal of Real-Time Image Processing,2022,19(3):687-701.
|
[10] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, 2018: 4510-4520.
|
[11] |
HOWARD A, SANDLER M, CHEN Bo, et al. Searching for mobileNetV3[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2020: 1314-1324.
|
[12] |
ZAMIR A R, WU T L, SUN L, et al. Feedback networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 1808-1817.
|
[13] |
LI Hengchao,LI Shuangshuang,HU Wenshuai,et al. Recurrent feedback convolutional neural network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,2021(19):1-5.
|
[14] |
MIAO Jun,XU Shaowu,ZOU Baixian,et al. ResNet based on feature-inspired gating strategy[J]. Multimedia Tools and Applications,2021,81(5):19283-19300.
|
[15] |
DING Xiaohan, GUO Yuchen, DING Guiguang, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]. IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, 2019: 1911-1920.
|