Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138.  doi: 10.13272/j.issn.1671-251x.2022020035
Citation: HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138.  doi: 10.13272/j.issn.1671-251x.2022020035

Research on positioning algorithm of underground personnel based on UWB

doi: 10.13272/j.issn.1671-251x.2022020035
  • Received Date: 2022-02-20
  • Rev Recd Date: 2022-06-05
  • Available Online: 2022-04-06
  • Aiming at the requirement of high real-time and high precision personnel positioning in underground mine, the positioning algorithm of underground personnel based on ultra wide band (UWB) is studied. The double-sided two-way ranging (DS-TWR) mode is adopted to measure the distance between the positioning base station and the positioning tag. This mode does not need the clock synchronization of the positioning base station and the positioning tag system. Therefore, the positioning precision is improved from the source. According to the ranging information, the weighted least squares (WLS) algorithm and CHAN algorithm are used to estimate the coordinates of the positioning tag. The performance of the two algorithms is compared and analyzed through static and dynamic experiments. The positioning precision is comprehensively evaluated through the root mean square error and the cumulative distribution function (CDF) of the error. The experimental results show that in static experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 5.878 6 cm and 8.007 4 cm respectively. The root mean square error of CHAN algorithm is 26.59% lower than that of WLS algorithm. In dynamic experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 12.2923 cm and 21.1809 cm respectively. The root mean square error of CHAN algorithm is 41.97% lower than that of WLS algorithm. The positioning precision of CHAN algorithm is higher than that of WLS algorithm. And CHAN algorithm is more suitable for underground personnel positioning in coal mines.

     

  • loading
  • [1]
    王龙康,李祥春,李安金,等. 我国煤矿安全生产现状分析及改善措施[J]. 中国煤炭,2016,42(9):96-100. doi: 10.3969/j.issn.1006-530X.2016.09.023

    WANG Longkang,LI Xiangchun,LI Anjin,et al. Analysis and improvement measures on current situation of coal mine safety production in China[J]. China Coal,2016,42(9):96-100. doi: 10.3969/j.issn.1006-530X.2016.09.023
    [2]
    汪义庭. 基于UWB的无线室内定位系统设计与实现[D]. 淮南: 安徽理工大学, 2019.

    WANG Yiting. Design and implementation of wireless indoor positioning system based on UWB[D]. Huainan: Anhui University of Science and Technology, 2019.
    [3]
    BIANCHI V,CIAMPOLINI P,MUNARI I D. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(2):566-575. doi: 10.1109/TIM.2018.2851675
    [4]
    VU-HOANG L, NGUYEN-MANH H, PHAN-DUY C, et al. A new technique to enhance accuracy of WLAN fingerprinting based indoor positioning system[C]//IEEE Fifth International Conference on Communications and Electronics, Danang, 2014.
    [5]
    CHEN X, WANG Z J. Reliable indoor location sensing technique using active RFID[C]//The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, 2010.
    [6]
    刘鹏媛. 基于UWB的高速弹丸定距关键技术研究及实现[D]. 太原: 中北大学, 2020.

    LIU Pengyuan. Research and implementation of the key technology of high speed projectile distance determination based on UWB[D]. Taiyuan: North University of China, 2020.
    [7]
    严嘉祺. 基于UWB的室内定位系统的算法与误差分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YAN Jiaqi. Algorithm and error analysis of indoor positioning system based on UWB[D]. Harbin: Harbin Institute of Technology, 2020.
    [8]
    陈思远,尹栋,牛轶峰. 基于UWB的SS−TWR改进方法研究与实现[J]. 计算机应用研究,2021,38(11):3398-3402.

    CHEN Siyuan,YIN Dong,NIU Yifeng. Research and implementation of improved SS-TWR method based on UWB[J]. Application Research of Computers,2021,38(11):3398-3402.
    [9]
    SHULE W,ALMANSA C M,QUERALTA J P,et al. UWB-based localization for multi-UAV systems and collaborative heterogeneous multi-robot systems[J]. Procedia Computer Science,2020,175:357-364. doi: 10.1016/j.procs.2020.07.051
    [10]
    WANG Gang,CAI Shu,LI Youming,et al. A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization[J]. IEEE Transactions on Vehicular Technology,2016,65(10):8603-8615. doi: 10.1109/TVT.2015.2508501
    [11]
    LI Aiguo, LUAN Fuzeng. An improved localization algorithm based on CHAN with high positioning accuracy in NLOS-WGN environment[C]//The 10th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2018: 332-335.
    [12]
    刘怡佳. 非视距环境下的UWB室内定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LIU Yijia. Research on UWB indoor positioning technology in non-line-of-sight environment[D]. Harbin: Harbin Institute of Technology, 2020.
    [13]
    顾慧东. 基于UWB的室内测距与定位系统[D]. 南京: 南京邮电大学, 2020.

    GU Huidong. Indoor ranging and positioning system based on UWB[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (236) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return