HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138. DOI: 10.13272/j.issn.1671-251x.2022020035
Citation: HE Lei, WEI Mingsheng, QIU Xinyu, et al. Research on positioning algorithm of underground personnel based on UWB[J]. Journal of Mine Automation,2022,48(6):134-138. DOI: 10.13272/j.issn.1671-251x.2022020035

Research on positioning algorithm of underground personnel based on UWB

More Information
  • Received Date: February 19, 2022
  • Revised Date: June 04, 2022
  • Available Online: April 05, 2022
  • Aiming at the requirement of high real-time and high precision personnel positioning in underground mine, the positioning algorithm of underground personnel based on ultra wide band (UWB) is studied. The double-sided two-way ranging (DS-TWR) mode is adopted to measure the distance between the positioning base station and the positioning tag. This mode does not need the clock synchronization of the positioning base station and the positioning tag system. Therefore, the positioning precision is improved from the source. According to the ranging information, the weighted least squares (WLS) algorithm and CHAN algorithm are used to estimate the coordinates of the positioning tag. The performance of the two algorithms is compared and analyzed through static and dynamic experiments. The positioning precision is comprehensively evaluated through the root mean square error and the cumulative distribution function (CDF) of the error. The experimental results show that in static experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 5.878 6 cm and 8.007 4 cm respectively. The root mean square error of CHAN algorithm is 26.59% lower than that of WLS algorithm. In dynamic experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 12.2923 cm and 21.1809 cm respectively. The root mean square error of CHAN algorithm is 41.97% lower than that of WLS algorithm. The positioning precision of CHAN algorithm is higher than that of WLS algorithm. And CHAN algorithm is more suitable for underground personnel positioning in coal mines.
  • [1]
    王龙康,李祥春,李安金,等. 我国煤矿安全生产现状分析及改善措施[J]. 中国煤炭,2016,42(9):96-100. DOI: 10.3969/j.issn.1006-530X.2016.09.023

    WANG Longkang,LI Xiangchun,LI Anjin,et al. Analysis and improvement measures on current situation of coal mine safety production in China[J]. China Coal,2016,42(9):96-100. DOI: 10.3969/j.issn.1006-530X.2016.09.023
    [2]
    汪义庭. 基于UWB的无线室内定位系统设计与实现[D]. 淮南: 安徽理工大学, 2019.

    WANG Yiting. Design and implementation of wireless indoor positioning system based on UWB[D]. Huainan: Anhui University of Science and Technology, 2019.
    [3]
    BIANCHI V,CIAMPOLINI P,MUNARI I D. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(2):566-575. DOI: 10.1109/TIM.2018.2851675
    [4]
    VU-HOANG L, NGUYEN-MANH H, PHAN-DUY C, et al. A new technique to enhance accuracy of WLAN fingerprinting based indoor positioning system[C]//IEEE Fifth International Conference on Communications and Electronics, Danang, 2014.
    [5]
    CHEN X, WANG Z J. Reliable indoor location sensing technique using active RFID[C]//The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, 2010.
    [6]
    刘鹏媛. 基于UWB的高速弹丸定距关键技术研究及实现[D]. 太原: 中北大学, 2020.

    LIU Pengyuan. Research and implementation of the key technology of high speed projectile distance determination based on UWB[D]. Taiyuan: North University of China, 2020.
    [7]
    严嘉祺. 基于UWB的室内定位系统的算法与误差分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YAN Jiaqi. Algorithm and error analysis of indoor positioning system based on UWB[D]. Harbin: Harbin Institute of Technology, 2020.
    [8]
    陈思远,尹栋,牛轶峰. 基于UWB的SS−TWR改进方法研究与实现[J]. 计算机应用研究,2021,38(11):3398-3402.

    CHEN Siyuan,YIN Dong,NIU Yifeng. Research and implementation of improved SS-TWR method based on UWB[J]. Application Research of Computers,2021,38(11):3398-3402.
    [9]
    SHULE W,ALMANSA C M,QUERALTA J P,et al. UWB-based localization for multi-UAV systems and collaborative heterogeneous multi-robot systems[J]. Procedia Computer Science,2020,175:357-364. DOI: 10.1016/j.procs.2020.07.051
    [10]
    WANG Gang,CAI Shu,LI Youming,et al. A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization[J]. IEEE Transactions on Vehicular Technology,2016,65(10):8603-8615. DOI: 10.1109/TVT.2015.2508501
    [11]
    LI Aiguo, LUAN Fuzeng. An improved localization algorithm based on CHAN with high positioning accuracy in NLOS-WGN environment[C]//The 10th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2018: 332-335.
    [12]
    刘怡佳. 非视距环境下的UWB室内定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LIU Yijia. Research on UWB indoor positioning technology in non-line-of-sight environment[D]. Harbin: Harbin Institute of Technology, 2020.
    [13]
    顾慧东. 基于UWB的室内测距与定位系统[D]. 南京: 南京邮电大学, 2020.

    GU Huidong. Indoor ranging and positioning system based on UWB[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
  • Related Articles

    [1]ZHANG Zenghui, MA Wenwei. Prediction of gas emission in mining face based on random forest regression algorithm[J]. Journal of Mine Automation, 2023, 49(12): 33-39. DOI: 10.13272/j.issn.1671-251x.2023020006
    [2]WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation, 2023, 49(3): 53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
    [3]ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700
    [4]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [5]FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
    [6]MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072
    [7]YE Manyuan, HUANG Kaifeng. Power balance control strategy for staircase modulation based on improved particle swarm optimization algorithm[J]. Journal of Mine Automation, 2015, 41(9): 57-62. DOI: 10.13272/j.issn.1671-251x.2015.09.015
    [8]CHI Jing, YANG Zhen-yu, ZHANG Ting. Intrusion detection method based on Bayesian and decision tree[J]. Journal of Mine Automation, 2013, 39(2): 62-65.
    [9]WANG Jian-jun, WANG Shi-ying, LEI Meng. Application of Particle Swarm Optimization Algorithm in Prediction of Coal Calorific Value[J]. Journal of Mine Automation, 2012, 38(5): 50-53.
    [10]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
  • Cited by

    Periodical cited type(7)

    1. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 .
    2. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    3. 王刚,杨宝东,徐浩,孙路路,黄启铭. 煤自燃程序升温实验及其在实验教学中的应用. 实验技术与管理. 2024(03): 225-231 .
    4. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 .
    5. 杨英兵,邢真强,张运增,郭佳策,李龙,鹿文勇,陈明浩. 煤自燃全阶段防控研究进展及趋势分析. 煤矿安全. 2024(07): 85-101 .
    6. 王玉怀,胡硕鹏,朱永兴,窦静文,张烜乐,张思佳. 机器学习在煤自燃预测预报中的应用现状及展望. 中国煤炭. 2024(10): 98-103 .
    7. 童保国,姜福领,毕寸光,王亮,田坤云. 基于LSTM改进Transformer的煤自燃温度预测模型. 金属矿山. 2024(12): 275-280 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (242) PDF downloads (54) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return