TANG Lijun, WU Wei, LIU Shisen. .Precise personnel positioning method in underground mine based on grey prediction model[J]. Journal of Mine Automation, 2021, 47(8): 128-132. DOI: 10.13272/j.issn.1671-251x.2021060027
Citation: TANG Lijun, WU Wei, LIU Shisen. .Precise personnel positioning method in underground mine based on grey prediction model[J]. Journal of Mine Automation, 2021, 47(8): 128-132. DOI: 10.13272/j.issn.1671-251x.2021060027

.Precise personnel positioning method in underground mine based on grey prediction model

More Information
  • The positioning accuracy of the precise personnel positioning system in underground mine is affected by the non-line-of-sight error and clock error. At present, the system mostly uses Kalman filter-based positioning method to reduce the error, but the positioning accuracy is not high when there is gross error in the measured data. In order to solve this problem, a precise personnel positioning method in underground mine based on grey prediction model is proposed. When a person carrying a marker card enters the coverage area of the positioning reader, the positioning reader calculates the measured distance between the marker card and the reader through wireless positioning technology and stores the measured distance into the data cache area. According to the measured distance in the data cache area, the GM (1, 1) model is used to calculate the predicted distance between the marker card and the reader at the next moment. When the prediction accuracy level of this predicted distance is excellent and the difference with the measured distance exceeds the error judgment threshold, the predicted distance is used to replace the measured distance to achieve the optimal compensation of the distance measurement error. The test results show that the method is not affected by the distance measurement error. When there is a gross error in the measured distance, the positioning accuracy of this method is significantly better than that of the Kalman filter-based positioning method.
  • Related Articles

    [1]PAN Wenlong, LI Shengjun, GAO Quanjun, YANG Luyu, LIU Qingfu, ZHANG Heming. Research on information model of coal mine fully mechanized mining equipment based on industrial Internet[J]. Journal of Mine Automation, 2024, 50(5): 84-92. DOI: 10.13272/j.issn.1671-251x.2024010022
    [2]CAO Xiangang, DUAN Yong, ZHAO Jiangbin, YANG Xin, ZHAO Fuyuan, FAN Hongwei. Summary of research on health status assessment of fully mechanized mining equipment[J]. Journal of Mine Automation, 2023, 49(9): 23-35, 97. DOI: 10.13272/j.issn.1671-251x.18143
    [3]CAI Anjiang, ZHANG Yan, REN Zhigang. Fault knowledge graph construction for coal mine fully mechanized mining equipment[J]. Journal of Mine Automation, 2023, 49(5): 46-51. DOI: 10.13272/j.issn.1671-251x.2023020005
    [4]JI Lei. Study on the weakening of coal wall with section resistance adjustment of fully mechanized support in hard thick coal seam with large mining height[J]. Journal of Mine Automation, 2022, 48(3): 5-10. DOI: 10.13272/j.issn.1671-251x.2022010006
    [5]MENG Guangrui, DING Zhen, LI Haodang. Discussion on key technologies of intelligent and autonomous coal cutting in fully mechanized mining[J]. Journal of Mine Automation, 2021, 47(S2): 1-3.
    [6]LIU Qing, HAN Xiuqi, XU Lanxin, QIN Wenguang. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Journal of Mine Automation, 2020, 46(5): 43-48. DOI: 10.13272/j.issn.1671-251x.17520
    [7]GAO Weiyong, ZHANG Minjuan. Research on following automation technology of hydraulic support on fully—mechanized coal mining face[J]. Journal of Mine Automation, 2018, 44(11): 14-17. DOI: 10.13272/j.issn.1671—251x.2018050040
    [8]CHEN Lei. Determination of real-time working resistance of support in fully-mechanized working face of medium-thickness coal seam[J]. Journal of Mine Automation, 2016, 42(12): 36-41. DOI: 10.13272/j.issn.1671-251x.2016.12.008
    [9]DU Yan, MENG Guoying, ZHANG Hanwen, ZHANG Miaotian, FENG Yu. Design of embedded monitoring and control platform of conveyor equipment of fully mechanized coal face of coal mine[J]. Journal of Mine Automation, 2014, 40(7): 96-98. DOI: 10.13272/j.issn.1671-251x.2014.07.026
    [10]HU Yua. New Technology of Quick and Safe Support Removal of Fully Mechanized Face[J]. Journal of Mine Automation, 2010, 36(10): 85-88.

Catalog

    Article Metrics

    Article views (116) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return