WANG Fei. Design of voice miner's lamp based on WiFi[J]. Industry and Mine Automation,2022,48(1):96-100. DOI: 10.13272/j.issn.1671-251x.2021010077
Citation: WANG Fei. Design of voice miner's lamp based on WiFi[J]. Industry and Mine Automation,2022,48(1):96-100. DOI: 10.13272/j.issn.1671-251x.2021010077

Design of voice miner's lamp based on WiFi

More Information
  • Received Date: January 25, 2021
  • Revised Date: November 24, 2021
  • Available Online: January 18, 2022
  • Published Date: January 19, 2022
  • In order to solve the problem that most of the existing miner's lamps only have the functions of lighting, positioning, environment perception and so on, and do not have the voice intercom function, a voice miner's lamp with voice intercom function based on WiFi is designed. The voice miner's lamp takes industrial Ethernet ring network and WiFi network as transmission platform, and adopts VoIP voice communication technology so as to realize voice playback, audio acquisition, and intercom function with the dispatching center. The audio codec chip is used to realize the conversion of voice analog signal and digital signal, and UDP protocol is applied to transmit the signal to the dispatching center so as to complete the two-way transmission of voice data and realize the integration of voice intercom and miner’s lamp lighting. This paper introduces the key technologies of voice intercom function in details. Audio data encoding format and cache management, reliable voice data transmission mechanism are used to ensure the accuracy of voice playback. The low-power sleep technology of WiFi module and microcontroller STM32L151 are used to reduce the average current of the voice miner's lamp and extend the working time. The test results show that the voice miner's lamp can meet the demand of voice intercom between the dispatching center and the underground workers, the communication distance between the voice miner's lamp and the WiFi base station can reach 400 m, the intercom transmission delay between the voice miner's lamp and the dispatching center is less than 1 s, and the multicast transmission delay between the voice miner's lamps is less than 3 s. The average current of the voice miner's lamp is less than 70 mA during intercom, and the average current is less than 5 mA during idle time.
  • [1]
    李爽, 薛广哲, 方新秋, 等. 煤矿智能化安全保障体系及关键技术[J]. 煤炭学报,2020,45(6):2320-2330.

    LI Shuang, XUE Guangzhe, FANG Xinqiu, et al. Coal mine intelligent safety system and key technologies[J]. Journal of China Coal Society,2020,45(6):2320-2330.
    [2]
    吕鹏飞, 何敏, 陈晓晶, 等. 智慧矿山发展与展望[J]. 工矿自动化,2018,44(9):84-88.

    LYU Pengfei, HE Min, CHEN Xiaojing, et al. Development and prospect of wisdom mine[J]. Industry and Mine Automation,2018,44(9):84-88.
    [3]
    孙继平, 陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping, CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [4]
    姚磊, 张明泉, 周泉. 井下无线物联网与智能终端应用研究[J]. 山东煤炭科技,2020(8):166-168. DOI: 10.3969/j.issn.1005-2801.2020.08.054

    YAO Lei, ZHANG Mingquan, ZHOU Quan. Application research of wireless Internet of things and intelligent terminal in underground[J]. Shandong Coal Science and Technology,2020(8):166-168. DOI: 10.3969/j.issn.1005-2801.2020.08.054
    [5]
    张帝, 权悦, 国海, 等. 基于LoRa与RT−Thread的多功能矿灯设计[J]. 工矿自动化,2021,47(6):96-102.

    ZHANG Di, QUAN Yue, GUO Hai, et al. Design of multifunctional miner lamp based on LoRa and RT-Thread[J]. Industry and Mine Automation,2021,47(6):96-102.
    [6]
    刘朝阳, 王安义. 便携式通信矿灯的研究与设计[J]. 现代电子技术,2020,43(1):9-11.

    LIU Zhaoyang, WANG Anyi. Study and design of portable communication mine lamp[J]. Modern Electronics Technique,2020,43(1):9-11.
    [7]
    戴剑波. 一种多模定位信息矿灯标识卡设计与实现[J]. 煤矿安全,2021,52(4):133-136.

    DAI Jianbo. Design and implementation of a multi-mode information lamp identification card for positioning[J]. Safety in Coal Mines,2021,52(4):133-136.
    [8]
    吴静然, 李秀凤, 吴倩. 基于WiFi的煤矿井下智能终端设计[J]. 工矿自动化,2013,39(4):5-8. DOI: 10.7526/j.issn.1671-251X.2013.04.002

    WU Jingran, LI Xiufeng, WU Qian. Design of underground intelligent terminal based on WiFi[J]. Industry and Mine Automation,2013,39(4):5-8. DOI: 10.7526/j.issn.1671-251X.2013.04.002
    [9]
    王军, 顾义东, 曾苛. WiFi通信技术在煤矿信息化中的应用分析[J]. 工矿自动化,2017,43(7):90-93.

    WANG Jun, GU Yidong, ZENG Ke. Application analysis of WiFi communication technology in coal mine informatization[J]. Industry and Mine Automation,2017,43(7):90-93.
    [10]
    张立亚. 全矿井融合通信系统研究[J]. 工矿自动化,2018,44(3):12-16.

    ZHANG Liya. Research on integrated mine communication system[J]. Industry and Mine Automation,2018,44(3):12-16.
    [11]
    孙继平. 现代化矿井通信技术与系统[J]. 工矿自动化,2013,39(3):1-5. DOI: 10.7526/j.issn.1671-251X.2013.03.001

    SUN Jiping. Modern mine communication technology and system[J]. Industry and Mine Automation,2013,39(3):1-5. DOI: 10.7526/j.issn.1671-251X.2013.03.001
    [12]
    王树强, 江云, 徐炜, 等. 矿用IP广播对讲系统设计[J]. 工矿自动化,2011,37(11):4-6.

    WANG Shuqiang, JIANG Yun, XU Wei, et al. Design of mine-used IP broadcast and talkback system[J]. Industry and Mine Automation,2011,37(11):4-6.
    [13]
    常云泽. 井下信息化矿灯通讯调度系统研究[J]. 能源与节能,2021(2):178-180.

    CHANG Yunze. Study on communication and dispatching system of underground informationalized miner's lamp[J]. Energy and Energy Conservation,2021(2):178-180.
    [14]
    张晓丹, 俞侃, 朱琳琳. 基于CC3200的可视化低功耗门铃设计与实现[J]. 自动化与仪表,2020,35(5):103-108.

    ZHANG Xiaodan, YU Kan, ZHU Linlin. Design and implementation of visual low-power WiFi door bell based on CC3200[J]. Automation & Instrumentation,2020,35(5):103-108.
  • Related Articles

    [1]LIU Wanchun, LI Yonghui. Wireless networked control systems: an overview and recent developments[J]. Journal of Mine Automation, 2025, 51(1): 1-10. DOI: 10.13272/j.issn.1671-251x.18229
    [2]CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation, 2024, 50(1): 115-121. DOI: 10.13272/j.issn.1671-251x.2023050057
    [3]SUN Tao, XIA Zhenxing, WANG Qianjin. Design of adaptive PID anti-saturation controller in switchover process of mine ventilator[J]. Journal of Mine Automation, 2019, 45(3): 90-94. DOI: 10.13272/j.issn.1671-251x.2018100013
    [4]CAO Xiaodong, YANG Shihai, JI Feng, YE Zongbin. Low loss control of explosion-proof frequency converter based on model predictive control[J]. Journal of Mine Automation, 2019, 45(2): 85-90. DOI: 10.13272/j.issn.1671-251x.2018100008
    [5]ZHANG Sihan, LIU Zhenjian, QIU Jinbo. Research on model predictive control model in application of shearer height-adjusting system[J]. Journal of Mine Automation, 2018, 44(5): 42-46. DOI: 10.13272/j.issn.1671-251x.2017120009
    [6]YU Jing, MO Xiuquan, XU Na. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Journal of Mine Automation, 2016, 42(10): 85-90. DOI: 10.13272/j.issn.1671-251x.2016.10.020
    [7]DONG Suling. Design of automatic switchover control system without blowing-out of mine main ventilator based on fuzzy control[J]. Journal of Mine Automation, 2015, 41(9): 39-43. DOI: 10.13272/j.issn.1671-251x.2015.09.011
    [8]DU Jingjing, HU Junchao, SHANGGUAN Xuanfeng. Multiple model predictive control of robot manipulator[J]. Journal of Mine Automation, 2014, 40(8): 57-62. DOI: 10.13272/j.issn.1671-251x.2014.08.015
    [9]MENG Lin-shan, MA Xiao-ping, LI Quan-bao. Improvement Scheme of Switchover Control System without Blowing-out of Mine Main Ventilator[J]. Journal of Mine Automation, 2012, 38(11): 9-10.
    [10]YU Li-min, MA Xiao-ping, REN Zhong-hua, YAN Shuan-zhu. Research of Switching Ventilator Control without Blowing-out of Main Ventilator of Mine and Its Implementatio[J]. Journal of Mine Automation, 2010, 36(9): 133-137.
  • Cited by

    Periodical cited type(16)

    1. 陈颖俊,霍瑜斌,施江峰,姚斌. 基于压电传感的水泵机组运行状态监测方法. 云南水力发电. 2025(01): 131-134 .
    2. 武晓莉. 矿用带式输送机运行状态监测系统应用. 机械管理开发. 2024(08): 249-251 .
    3. 梁堃,王驰. 基于分布式光纤声波传感器的带式输送机托辊故障监测方法. 激光与光电子学进展. 2023(09): 276-284 .
    4. 高波,袁媛,岳伟,张鑫增. 基于机器学习的托辊故障等级评价模型研究. 物流科技. 2023(13): 32-35 .
    5. 吴云雁. 矿用带式输送机故障监测与诊断系统设计. 陕西煤炭. 2023(04): 120-123+135 .
    6. 杨杰. 煤矿主运输长距离带式输送机托辊安装工艺研究. 煤矿机械. 2023(09): 101-105 .
    7. 邵斌,王磊,黄瀚. 煤矿井下带式输送机智能视频远程巡检系统设计. 煤矿机械. 2023(12): 198-200 .
    8. 李敬兆,孙杰臣,叶桐舟. 矿井带式输送机运行状态预测方法. 工矿自动化. 2022(02): 107-113 . 本站查看
    9. 宋超. 掘进巷道带式输送机常见故障及处理措施. 现代机械. 2022(01): 100-102 .
    10. 吴琦. 矿用皮带输送机托辊运行监测技术研究. 机械管理开发. 2022(01): 133-134+142 .
    11. 李超. 带式输送机自动巡检装置的设计及现场调试试验. 机械管理开发. 2022(04): 52-53+56 .
    12. 岳涛. 带式输送机托辊健康监测分析研究. 机械管理开发. 2022(07): 298-299+302 .
    13. 叶涛,王起,张弛. 带式输送机可视化监测系统研究与实现. 起重运输机械. 2022(19): 42-46 .
    14. 郝晓平. 带式输送机托辊故障检测技术研究. 机械管理开发. 2022(12): 121-122+125 .
    15. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    16. 吕超. 带式输送机自动调心托辊的优化设计探析. 机械管理开发. 2021(12): 66-67+70 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (192) PDF downloads (30) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return