CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation,2024,50(1):115-121. DOI: 10.13272/j.issn.1671-251x.2023050057
Citation: CHENG Huan, DENG Liying. Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway[J]. Journal of Mine Automation,2024,50(1):115-121. DOI: 10.13272/j.issn.1671-251x.2023050057

Trajectory planning and tracking control of a seven degree of freedom shotcrete robot in coal mine roadway

More Information
  • Received Date: May 16, 2023
  • Revised Date: January 23, 2024
  • Available Online: January 30, 2024
  • During the construction process, the coal mine roadway shotcrete robot has the problems of discontinuous motions, large position errors, and low stability. In order to solve the above problems, a trajectory planning and tracking control method of a seven degree of freedom shotcrete robot in coal mine roadways is proposed. Based on the range of motion of the working arm when the shotcrete robot is stationary and the shotcrete length of the airbrush along the roadway direction, the roadway is divided into several sections to be sprayed. The robot's motion trajectory between each section and the motion trajectory of the working arm on each section are planned to ensure continuous action of the robot during the spraying process. A kinematic model of the shotcrete robot is established. Firstly, the robot's motion trajectory is planned using the cubic polynomial interpolation method. Secondly, the reference trajectory generated by the cubic polynomial interpolation is tracked and controlled using the model predictive control algorithm. It achieves precise and smooth motion of the robot in the roadway. A kinematic model of the working arm is established based on the standard D-H parameter method. The 3-5-3 section polynomial interpolation method is used to plan the motion trajectory of the robot's working arm on the section to be sprayed, so that the working arm has continuous acceleration during the spraying process. The simulation results show that the maximum position error of the shotcrete robot during its motion is 0.07 m, and the maximum directional angle error is only 0.99 rad. The overall motion speed is stable, and it can quickly return to a stable state after speed fluctuations, meeting the requirements of accurate and stable robot motion. During the motion of the working arm, the spraying trajectory, joint variable changes, joint velocity and acceleration curves are overall continuous and smooth, meeting the requirements of continuous and stable spraying actions.
  • [1]
    袁亮,薛俊华,刘泉声,等. 煤矿深部岩巷围岩控制理论与支护技术[J]. 煤炭学报,2011,36(4):535-543.

    YUAN Liang,XUE Junhua,LIU Quansheng,et al. Surrounding rock stability control theory and support technique in deep rock roadway for coal mine[J]. Journal of China Coal Society,2011,36(4):535-543.
    [2]
    邓镓敏,王步康,郭治富. 锚护机器人工作臂的轨迹规划[J]. 煤炭技术,2021,40(12):187-189.

    DENG Jiamin,WANG Bukang,GUO Zhifu. Research of trajectory planning for rock bolting robot's manipulator[J]. Coal Technology,2021,40(12):187-189.
    [3]
    刘送永,徐海乔,张德义,等. 多自由度自动喷浆机械臂运动分析及路径优化[J]. 煤炭学报,2020,45(增刊2):1079-1088.

    LIU Songyong,XU Haiqiao,ZHANG Deyi,et al. Motion analysis and path optimization of multi-DOF automatic shotcrete manipulator[J]. Journal of China Coal Society,2020,45(S2):1079-1088.
    [4]
    肖振楠,申燚,倪辰旖. 六自由度机械手的运动轨迹规划与仿真[J]. 机床与液压,2018,46(15):58-63.

    XIAO Zhennan,SHEN Yi,NI Chenyi. Kinematics trajectory planning and simulation of six degrees of freedom manipulator[J]. Machine Tool & Hydraulics,2018,46(15):58-63.
    [5]
    LIU Gangfeng,SUN Xianchao,LIU Yubin,et al. Automatic spraying motion planning of a shotcrete manipulator[J]. Intelligent Service Robotics,2022,15(1):115-128. DOI: 10.1007/s11370-021-00405-3
    [6]
    CHEN Gang,LIU Dan,WANG Yifan,et al. Path planning method with obstacle avoidance for manipulators in dynamic environment[J]. International Journal of Advanced Robotic Systems,2018,15(6). DOI: 10.1177/1729881418820223.
    [7]
    LIU Yibo,XIAO Fan,TONG Xiliang,et al. Manipulator trajectory planning based on work subspace division[J]. Concurrency and Computation:Practice and Experience, 2022,34(5). DOI: 10.1002/cpe.6710.
    [8]
    刘俊辉,周伟. 基于三次B样条的六自由度液压机械臂轨迹规划[J]. 机床与液压,2022,50(9):75-80. DOI: 10.3969/j.issn.1001-3881.2022.09.013

    LIU Junhui,ZHOU Wei. Trajectory planning of 6-DOF hydraulic manipulator based on cubic B-spline[J]. Machine Tool & Hydraulics,2022,50(9):75-80. DOI: 10.3969/j.issn.1001-3881.2022.09.013
    [9]
    谢斌,秦觅,宋迪,等. 八自由度全自动隧道喷浆机器人系统设计[J]. 华中科技大学学报(自然科学版),2020,48(1):115-120.

    XIE Bin,QIN Mi,SONG Di,et al. Design of automatic tunnel shotcrete robotic system for 8-DOF[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2020,48(1):115-120.
    [10]
    许万,曹松,罗西,等. 双轮差速移动机器人轨迹跟踪混合控制算法研究[J]. 组合机床与自动化加工技术,2018(3):78-83.

    XU Wan,CAO Song,LUO Xi,et al. Study on hybrid control algorithm for trajectory tracking of dual-wheeled differential speed mobile robot[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(3):78-83.
    [11]
    YANG Libo,GUO Mei,ARDASHIR M,et al. Taylor series-based fuzzy model predictive control for wheeled robots[J]. Mathematics,2022,10(14). DOI: 10.3390/math10142498.
    [12]
    CHEON H,KIM B K. Online bidirectional trajectory planning for mobile robots in state-time space[J]. IEEE Transactions on Industrial Electronics,2019,66(6):4555-4565. DOI: 10.1109/TIE.2018.2866039
    [13]
    GB 50086—2015 岩土锚杆与喷射混凝土支护工程技术规范[S].

    GB 50086-2015 Technical code for engineering of ground anchorages and shotcrete support[S].
    [14]
    ALMASRI E,UYGUROGLU M K. Modeling and trajectory planning optimization for the symmetrical multiwheeled omnidirectional mobile robot[J]. Symmetry,2021,13(6). DOI: 10.3390/sym13061033.
    [15]
    WANG Lei,WU Qing,LIN Fei,et al. A new trajectory-planning beetle swarm optimization algorithm for trajectory planning of robot manipulators[J]. IEEE Access,2019,7:154331-154345. DOI: 10.1109/ACCESS.2019.2949271
    [16]
    崔振,翟陆阳,赵志强. 基于MPC的无人驾驶车辆轨迹跟踪算法[J]. 汽车实用技术,2022,47(21):43-46.

    CUI Zhen,ZHAI Luyang,ZHAO Zhiqiang. Driverless vehicle trajectory tracking algorithm based on MPC[J]. Automobile Applied Technology,2022,47(21):43-46.
    [17]
    CHOI Y,LEE W,KIM Y,et al. A variable-sampling time model predictive control algorithm for improving path-tracking performance of a vehicle[J]. Sensors,2021,21(10). DOI: 10.3390/s21206845.
    [18]
    Peter Corke. 机器人学、机器视觉与控制——MATLAB算法基础[M]. 刘荣,译. 北京:电子工业出版社,2016.

    CORKE P. Robotics,vision and control:fundamental algorithms in MATLAB[M]. LIU Rong,Translate. Beijing:Publishing House of Electronics Industry,2016.
    [19]
    杨辰光,李智军,许扬. 机器人仿真与编程技术[M]. 北京:清华大学出版社,2018.

    YANG Chenguang,LI Zhijun,XU Yang. Robot simulation and programming technology[M]. Beijing:Tsinghua University Press,2018.
    [20]
    任军,吴正虎,曹秋玉. 基于MATLAB Robotics工具箱的ER50机器人轨迹规划与仿真[J]. 机械设计与制造,2022(8):33-36.

    REN Jun,WU Zhenghu,CAO Qiuyu. Trajectory planning and simulation of ER50 manipulator based on MATLAB robotics toolbox[J]. Machinery Design & Manufacture,2022(8):33-36.
    [21]
    邓镓敏,郭治富,王步康. 锚护机器人工作臂的时间最优轨迹规划[J]. 煤炭技术,2022,41(5):172-174.

    DENG Jiamin,GUO Zhifu,WANG Bukang. Time-optimal trajectory planning of rock bolting robot[J]. Coal Technology,2022,41(5):172-174.
  • Related Articles

    [1]ZHAO Shuquan, GUAN Tianqi. Intelligent mine reconstruction of No.3 Coal Mine[J]. Journal of Mine Automation, 2023, 49(S1): 12-13,17.
    [2]CAI Jiahao, WANG Qianjin, FU Xiaorong, MA Xiaoping. Study on the optimal control of supply air volume in switchover process of mine main ventilators[J]. Journal of Mine Automation, 2023, 49(1): 140-145, 161. DOI: 10.13272/j.issn.1671-251x.2022050059
    [3]TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Journal of Mine Automation, 2021, 47(12): 55-61. DOI: 10.13272/j.issn.1671-251x.2021050018
    [4]CAO Xiaodong, YANG Shihai, JI Feng, YE Zongbin. Low loss control of explosion-proof frequency converter based on model predictive control[J]. Journal of Mine Automation, 2019, 45(2): 85-90. DOI: 10.13272/j.issn.1671-251x.2018100008
    [5]ZHANG Sihan, LIU Zhenjian, QIU Jinbo. Research on model predictive control model in application of shearer height-adjusting system[J]. Journal of Mine Automation, 2018, 44(5): 42-46. DOI: 10.13272/j.issn.1671-251x.2017120009
    [6]ZHOU Wei, YUAN Liang, XUE Junhua, HE Guanghui, LUO Yong, DUAN Changrui, REN Bo. Experimental analysis of isothermal adsorption and desorption characteristics of gas in coal samples with multi grain sizes: A case study on No.3 coal in Sihe Coal Mine[J]. Journal of Mine Automation, 2018, 44(1): 26-30. DOI: 10.13272/j.issn.1671-251x.17277
    [7]ZHANG Yutong, LIU Qimeng, CAI Mengya, ZHAO Jin, YE Mei, ZHANG Danda. Roof stability analysis in No.3 coal seam of Panxie peripheral[J]. Journal of Mine Automation, 2017, 43(10): 37-42. DOI: 10.13272/j.issn.1671-251x.2017.10.007
    [8]YU Jing, MO Xiuquan, XU Na. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Journal of Mine Automation, 2016, 42(10): 85-90. DOI: 10.13272/j.issn.1671-251x.2016.10.020
    [9]LIU Zhe. Application of PLC in Frequency-conversion Speed Regulating for AC 3-phase Asynchronous Motor[J]. Journal of Mine Automation, 2005, 31(5): 69-70.
    [10]YU Xiao-ya. Programming Technnique of Interactive 3-Dimensional Animation Based on Java 3D[J]. Journal of Mine Automation, 2003, 29(6): 57-59.

Catalog

    Article Metrics

    Article views (174) PDF downloads (30) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return