DONG Xinyu, SHI Jie, ZHANG Guoying. Real-time detection algorithm of underground human body based on lightweight parameters[J]. Journal of Mine Automation, 2021, 47(6): 71-78. DOI: 10.13272/j.issn.1671-251x.2021010035
Citation: DONG Xinyu, SHI Jie, ZHANG Guoying. Real-time detection algorithm of underground human body based on lightweight parameters[J]. Journal of Mine Automation, 2021, 47(6): 71-78. DOI: 10.13272/j.issn.1671-251x.2021010035

Real-time detection algorithm of underground human body based on lightweight parameters

More Information
  • The existing underground personnel target detection methods cannot achieve the real-time detection results due to the deep network and huge calculation amount, a real-time detection algorithm of underground human body based on lightweight parameters is proposed. The method uses the depthwise separable convolution module and the inverted residual module to construct a lightweight characteristic extraction network. Through the depth separable convolution compressing parameter amount and calculation, the operation speed of the characteristic extraction network is improved. The inverted residual structure extracts enough information through a higher dimensional tensor to ensure the accuracy of the characteristic extraction network. Combining the lightweight characteristic extraction network and the SSD multi-scale detection method, an underground human body real-time detection model is established. The model adds traditional convolutional layers to 27 layers to perform convolution operations on the basic structure of the lightweight inverted residual characteristic extraction network. 6-layer characteristic maps are extracted for multi-scale prediction. The test results show that the size of the model is 18 Mbyte, the frame rate is about 35 frames/s, and the performance is better than the commonly used VGG16+Faster R-CNN model and VGG16+ multi-scale detection model. In order to meet the needs of target detection of specific underground environments, a semi-automatic annotation method for human body data based on Faster R-CNN is designed, which can reduce manual workload significantly and improve the accuracy of underground human body detection. The color information of miners' clothing is used for secondary screening of the detection result frame to eliminate the false detection frames that detecting the background as human bodies. The test results show that the algorithm realizes real-time positioning detection and frame selection of mine working face personnel with an accuracy of 92.86% and a recall rate of 98.11%. The algorithm solves the problem of missing and false detection of underground personnel effectively.
  • Related Articles

    [1]ZHANG Zenghui, MA Wenwei. Prediction of gas emission in mining face based on random forest regression algorithm[J]. Journal of Mine Automation, 2023, 49(12): 33-39. DOI: 10.13272/j.issn.1671-251x.2023020006
    [2]WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation, 2023, 49(3): 53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
    [3]ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700
    [4]WU Yaqin, LI Huijun, XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Journal of Mine Automation, 2020, 46(4): 46-53. DOI: 10.13272/j.issn.1671-251x.2019110018
    [5]FENG Shuo, XIE Tingchuan, KANG Jing, LI Jianliang. Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J]. Journal of Mine Automation, 2020, 46(1): 65-71. DOI: 10.13272/j.issn.1671-251x.2019050092
    [6]MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072
    [7]YE Manyuan, HUANG Kaifeng. Power balance control strategy for staircase modulation based on improved particle swarm optimization algorithm[J]. Journal of Mine Automation, 2015, 41(9): 57-62. DOI: 10.13272/j.issn.1671-251x.2015.09.015
    [8]CHI Jing, YANG Zhen-yu, ZHANG Ting. Intrusion detection method based on Bayesian and decision tree[J]. Journal of Mine Automation, 2013, 39(2): 62-65.
    [9]WANG Jian-jun, WANG Shi-ying, LEI Meng. Application of Particle Swarm Optimization Algorithm in Prediction of Coal Calorific Value[J]. Journal of Mine Automation, 2012, 38(5): 50-53.
    [10]AN Feng-shua, . Optimization of PID Controller Parameters Based on Modified Particle Swarm Optimization Algorithm[J]. Journal of Mine Automation, 2010, 36(5): 54-57.
  • Cited by

    Periodical cited type(7)

    1. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 .
    2. 邓军,李鑫,王凯,王伟峰,闫军,汤宗情,康付如,任帅京. 矿井火灾智能监测预警技术近20年研究进展及展望. 煤炭科学技术. 2024(01): 154-177 .
    3. 王刚,杨宝东,徐浩,孙路路,黄启铭. 煤自燃程序升温实验及其在实验教学中的应用. 实验技术与管理. 2024(03): 225-231 .
    4. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 .
    5. 杨英兵,邢真强,张运增,郭佳策,李龙,鹿文勇,陈明浩. 煤自燃全阶段防控研究进展及趋势分析. 煤矿安全. 2024(07): 85-101 .
    6. 王玉怀,胡硕鹏,朱永兴,窦静文,张烜乐,张思佳. 机器学习在煤自燃预测预报中的应用现状及展望. 中国煤炭. 2024(10): 98-103 .
    7. 童保国,姜福领,毕寸光,王亮,田坤云. 基于LSTM改进Transformer的煤自燃温度预测模型. 金属矿山. 2024(12): 275-280 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (158) PDF downloads (13) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return