CAO Xiangang, DUAN Xinyu, ZHANG Mengyuan, LEI Zhuo, LI Yanchuan. Coal mine equipment condition monitoring system desig[J]. Journal of Mine Automation, 2021, 47(5): 101-105. DOI: 10.13272/j.issn.1671-251x.2020120065
Citation: CAO Xiangang, DUAN Xinyu, ZHANG Mengyuan, LEI Zhuo, LI Yanchuan. Coal mine equipment condition monitoring system desig[J]. Journal of Mine Automation, 2021, 47(5): 101-105. DOI: 10.13272/j.issn.1671-251x.2020120065

Coal mine equipment condition monitoring system desig

More Information
  • In order to solve the problem of low transmission efficiency caused by high concurrency of equipment monitoring data during the simultaneous operation of underground equipment groups in coal mines, a design scheme for coal mine equipment condition monitoring system is proposed. The system eliminates the heterogeneity of sensor networks effectively through the data integration gateway. Different sensors are registered in the data integration gateway, and the sensor network protocol adapters are used to call different sensor network protocol resolution interfaces to eliminate the heterogeneity of sensor networks, generate unified format of Java Script Object Notation (JSON) data, and send the data to the corresponding message push service. Through the point-to-point transmission through the Queue channel in the ActiveMQ message queue, the data transmission service pushes messages to the network transmission model in real time to obtain high concurrent transmission of equipment status data and ensure the real-time and reliability of monitoring data. The Netty network transmission model is used to avoid the increase in server load caused by empty polling and improve the efficiency of monitoring data transmission. In the process of data collection, multiple equipment operating at the same time lead to an increase in the frequency of data sampling and the number of concurrent requests from sensor terminals. The Epoll mode in Netty model prioritizes the ready I/O connections so as to reduce the empty polling. The test results show that as the number of concurrent requests in the system increases, the CPU usage of the system with the Java NIO model is 28% higher than that of the system with the Netty model. When the number of concurrent requests in the system is the same, the average response time of the system with the Java NIO model is longer than that of the system with the Netty model. The application of Netty model can improve the high concurrency processing capability of coal mine equipment condition monitoring system effectively and meet the requirements of high efficient transmission of equipment monitoring data.
  • Related Articles

    [1]QIAO Zhenpeng, WANG Saili, GUO Guo, YANG Zheng, LIU Tao, YU Kaiwei. Influence of coil spacing on performance of resonant wireless power transmission system[J]. Journal of Mine Automation, 2020, 46(4): 60-65. DOI: 10.13272/j.issn.1671-251x.2019090007
    [2]SUN Xiangyu, GONG Lijiao, LI Hongwei, JIN Zhengwei. Research on transmission characteristics of magnetically coupled resonant wireless power transfer system[J]. Journal of Mine Automation, 2020, 46(4): 54-59. DOI: 10.13272/j.issn.1671-251x.2019090001
    [3]FENG Liu, HE Jialua. Research on four-coil structure of magnetically coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2019, 45(5): 73-78. DOI: 10.13272/j.issn.1671-251x.17385
    [4]KANG Huifeng. Influence of offset angle of coil on wireless power transmission characteristics[J]. Journal of Mine Automation, 2018, 44(6): 31-35. DOI: 10.13272/j.issn.1671-251x.2018030093
    [5]LI Xinheng, GONG Lijiao, FENG Li, SUN Xiangyu, LI Yang, LI Hui. Analysis of frequency characteristics of three-coil magnetic coupling resonant wireless power transmission system[J]. Journal of Mine Automation, 2018, 44(3): 91-96. DOI: 10.13272/j.issn.1671-251x.2017090019
    [6]WANG Yameng, WU Xinghua, LIN Lingyan, SONG Jiancheng. Magnetic coupling resonant wireless power transmission system based on variable coil structure[J]. Journal of Mine Automation, 2017, 43(9): 89-95. DOI: 10.13272/j.issn.1671-251x.2017.09.016
    [7]TIAN Zijian, DU Xinxin, FAN Jing, CAO Yangyang. Research on repeating coil of asymmetric magnetic coupling resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(12): 35-39. DOI: 10.13272/j.issn.1671-251x.2015.12.010
    [8]WU Rong, WANG Chao, ZHANG Shang, XU Lisha. Modeling and transmission efficiency analysis of three coil system for wireless power transmissio[J]. Journal of Mine Automation, 2015, 41(8): 89-92. DOI: 10.13272/j.issn.1671-251x.2015.08.022
    [9]ZHANG Guoyuan, WANG Xi, ZHAO Duan. Analysis of transmission characteristics of magnetically-coupled resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(8): 85-88. DOI: 10.13272/j.issn.1671-251x.2015.08.021
    [10]TIAN Zijian, DU Xinxin, ZHU Yuanzhong, WANG Juan. Impact of obstacles on transmission efficiency of magnetic coupling resonant wireless power transmission system[J]. Journal of Mine Automation, 2015, 41(1): 49-53. DOI: 10.13272/j.issn.1671-251x.2015.01.013
  • Cited by

    Periodical cited type(2)

    1. 易恩兵. 不同循环加卸载路径含瓦斯煤体变形—渗流特征. 能源与环保. 2025(02): 1-8 .
    2. 郭军,王磊,杜文涛,刘荫,陈昌明,张科峰,李岱霖. 通风方式对沿空留巷采空区煤自燃影响规律研究. 工矿自动化. 2024(11): 142-151 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (104) PDF downloads (20) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return