LI Yao, WANG Yiha. Adaptive coal flow detection method of belt conveyor[J]. Journal of Mine Automation, 2020, 46(6): 98-102. DOI: 10.13272/j.issn.1671-251x.2019090087
Citation: LI Yao, WANG Yiha. Adaptive coal flow detection method of belt conveyor[J]. Journal of Mine Automation, 2020, 46(6): 98-102. DOI: 10.13272/j.issn.1671-251x.2019090087

Adaptive coal flow detection method of belt conveyor

More Information
  • For problems of existing coal flow detection methods of belt conveyor such as susceptibility of detection accuracy to environment, complex realization process, long time-consumption of information extraction and so on, an adaptive coal flow detection method of belt conveyor based on machine vision was proposed. Firstly, the original coal transportation image of belt conveyor is enhanced by a fusion algorithm based on wavelet transform and segmented by OTSU algorithm into belt image and coal image. Secondly, the segmented coal image is processed by cavity filling, contour detection and area calculation to obtain area information of the coal image. Finally, a coal flow detection algorithm based on mathematical modeling is used to obtain coal flow detection value through calculating transient volume of coal. The test results show that the average detection time of the method is about 30 ms, and error between detection results and the measurement ones of electronic belt scale is about 5%, which meets real-time and accuracy requirements for coal flow detection of automatic speed control system of belt conveyor.
  • Related Articles

    [1]LI Ji, MA Xiaofeng, WU Jieqi, QIANG Xubo, WU Liyang, YAN Bo, DONG Jihui, CHEN Chaosen. Coal-rock image recognition method integrating drilling geological information[J]. Journal of Mine Automation, 2024, 50(8): 38-43, 68. DOI: 10.13272/j.issn.1671-251x.2024040048
    [2]HAO Bonan. Coal mine underground image enhancement method based on dust removal estimation and multiple exposure fusion[J]. Journal of Mine Automation, 2023, 49(11): 100-106. DOI: 10.13272/j.issn.1671-251x.2023080105
    [3]FENG Wei, YAO Wanqiang, LIN Xiaohu, ZHENG Junliang, XIANGLI Hailong, XUE Zhiqiang. Visual simultaneous localization and mapping algorithm of coal mine underground considering image enhancement[J]. Journal of Mine Automation, 2023, 49(5): 74-81. DOI: 10.13272/j.issn.1671-251x.2022090025
    [4]LI Zhenglong, WANG Hongwei, CAO Wenyan, ZHANG Fujing, WANG Yuheng. A method for enhancing low light images in coal mines based on Retinex model containing noise[J]. Journal of Mine Automation, 2023, 49(4): 70-77. DOI: 10.13272/j.issn.1671-251x.2022080047
    [5]KONG Erwei, ZHANG Yabang, LI Jiayue, WANG Manli. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation, 2023, 49(4): 62-69, 85. DOI: 10.13272/j.issn.1671-251x.2022110054
    [6]ZUO Chunzi, WANG Zheng, ZHANG Ke, PAN Hongguang. Coal dust image segmentation method based on improved DeepLabV3+[J]. Journal of Mine Automation, 2022, 48(5): 52-57, 64. DOI: 10.13272/j.issn.1671-251x.2021120086
    [7]WANG Hongdong, GUO Weidong, ZHU Meiqiang, LEI Meng. An enhancement algorithm for low-illumination image of underground coal mine[J]. Journal of Mine Automation, 2019, 45(11): 81-85. DOI: 10.13272/j.issn.1671-251x.17498
    [8]CHENG Deqiang, ZHENG Zhen, JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Journal of Mine Automation, 2015, 41(12): 31-34. DOI: 10.13272/j.issn.1671-251x.2015.12.009
    [9]WANG Xiaobing, YAO Xueqing, QIU Yinguo, SUN Jiuyun. A new filtering algorithm for video monitoring image of coal mine[J]. Journal of Mine Automation, 2014, 40(11): 76-80. DOI: 10.13272/j.issn.1671-251x.2014.11.018
    [10]YING Dong-jie, LI Wen-jie. Analysis of Enhancement Algorithms of Coal Mine Monitoring Image and Its Realizatio[J]. Journal of Mine Automation, 2012, 38(8): 55-58.
  • Cited by

    Periodical cited type(19)

    1. 马涛,李志杰. 李楼煤矿带式输送机低能耗运行控制系统的应用分析. 能源技术与管理. 2024(02): 133-135 .
    2. 贾文琪,蒋伟,季亮. 基于载荷分布检测的煤流运输协同控制系统设计. 煤矿机械. 2024(10): 15-19 .
    3. 王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究. 煤矿机械. 2023(01): 14-17 .
    4. 曲荣超,王璐,朱国强. 带式输送机智慧调速运行控制系统的研究. 山东煤炭科技. 2023(05): 155-157 .
    5. 张俊升,王洪磊,李佳城. 基于双目结构光视觉的煤流量测量研究. 工矿自动化. 2023(07): 19-26 . 本站查看
    6. 张海俊. 煤矿井下皮带运输机监控系统的优化. 江西煤炭科技. 2023(03): 217-219 .
    7. 刘剑红. 选煤厂带式输送机智能调速系统研究. 山东煤炭科技. 2023(07): 161-163 .
    8. 宋立彬,张淑艳. 基于机器视觉的煤流量快速检测方法. 煤炭技术. 2023(09): 241-243 .
    9. 王小雅. 皮带运输机变频驱动方案设计与实现. 江西煤炭科技. 2023(04): 210-212 .
    10. 吴江伟,南柄飞. 工作面刮板输送机煤流状态识别方法. 工矿自动化. 2023(11): 60-66 . 本站查看
    11. 迟双宝,孙常民. 煤矿井下主运带式输送机智能调控系统的应用研究. 中国煤炭. 2023(S2): 30-35 .
    12. 王佳,郭奋超,王荣泉,党静. 带式输送机智能分煤系统的设计应用. 陕西煤炭. 2022(03): 94-97+105 .
    13. 朱文清. 带式输送机智能联动控制系统的应用研究. 山东煤炭科技. 2022(08): 202-204 .
    14. 蒋思中,郭宏涛,安轲,卢丹萍. 基于PSO-BP神经网络的带式输送机能耗优化研究. 煤炭技术. 2022(11): 234-236 .
    15. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    16. 刘克颜. 基于机器视觉的运输机溜槽堵塞检测系统. 煤炭加工与综合利用. 2021(02): 21-22 .
    17. 王惠臣. 小保当一号煤矿主斜井带式输送机智能调速电控系统设计. 煤炭工程. 2021(06): 17-22 .
    18. 康俊亮. 矿用带式输送机运行安全监控系统的研究. 机械管理开发. 2021(06): 233-234+237 .
    19. 焦贺彬. 煤矿带式输送机智能化安全监测系统研究. 煤矿机械. 2020(10): 182-185 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (260) PDF downloads (30) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return