ZHOU Zhen, ZHAI Cheng. Study on the change law of temperature and mechanical properties of coal body in uncovering coal seam in low temperature freezing cross-cut[J]. Journal of Mine Automation, 2021, 47(2): 70-74. DOI: 10.13272/j.issn.1671-251x.2020070028
Citation: ZHOU Zhen, ZHAI Cheng. Study on the change law of temperature and mechanical properties of coal body in uncovering coal seam in low temperature freezing cross-cut[J]. Journal of Mine Automation, 2021, 47(2): 70-74. DOI: 10.13272/j.issn.1671-251x.2020070028

Study on the change law of temperature and mechanical properties of coal body in uncovering coal seam in low temperature freezing cross-cut

More Information
  • Published Date: February 19, 2021
  • In order to study the change law of temperature and mechanical properties of coal body in uncovering coal seam in low-temperature freezing cross-cut, U-shaped copper tubes are pre-buried and frozen with liquid nitrogen during the preparation of coal samples. The characteristics of internal and surface temperature and stress-strain changes of coal samples under different freezing times are analyzed by temperature measurement, infrared thermal imaging and uniaxial compression. The test results show that with the increase of freezing time, the internal and surface temperatures of coal samples show a decreasing trend. The lowest surface temperature of coal samples is located near the U-shaped copper tube, and the highest surface temperature of coal samples is located at the boundary of coal samples. In the compaction stage, with the increase of freezing time, the strain of coal samples gradually decreases and the compaction stage shortens. In the elastic deformation stage and yield stage, with the increase of freezing time, the maximum stress and elastic modulus of coal samples both increase.
  • Related Articles

    [1]YAN Guofeng, HUANG Xingli, YAN Zhenguo. Research on exothermic and kinetic characteristics of low-temperature oxidation of preoxidized coal[J]. Journal of Mine Automation, 2022, 48(7): 135-141. DOI: 10.13272/j.issn.1671-251x.2022030032
    [2]HOU Fei, CAO Weihu, WANG Yi, ZHONG Xiaoxing. Comparative study on test methods of coal low-temperature oxidation kinetic parameters[J]. Journal of Mine Automation, 2021, 47(9): 58-64. DOI: 10.13272/j.issn.1671-251x.17812
    [3]LONG Nengzeng, YUAN Mei, AO Xuanjun, LI Xinling, ZHANG Ping. Prediction of coal and gas outburst intensity based on LLE-FOA-BP model[J]. Journal of Mine Automation, 2019, 45(10): 68-73. DOI: 10.13272/j.issn.1671-251x.2019010054
    [4]LI Shengpu, WANG Xiaohui. Study of mining method of signal of coal and gas outburst[J]. Journal of Mine Automation, 2015, 41(6): 58-60. DOI: 10.13272/j.issn.1671-251x.2015.06.014
    [5]WANG Sheguo, TIAN Zhimin, ZHANG Feng, WU Shasha. System of coal and gas outburst prediction based on improved BP neural network[J]. Journal of Mine Automation, 2014, 40(5): 34-37. DOI: 10.13272/j.issn.1671-251x.2014.05.009
    [6]HUANG Yu-feng, CUI Jian-ming, LIU Zhun, SUN Long-tao. Design of Monitoring System of Coal and Gas Outburst Based on DSP and Single-chip Microcomputer[J]. Journal of Mine Automation, 2011, 37(4): 56-59.
    [7]LI Da-feng, ZHAO Shuai, YANG Dai-ping. Forecasting Method of Coal and Gas Outburst Based on KPCA-SVM[J]. Journal of Mine Automation, 2010, 36(10): 36-38.
    [8]DU feng~, SU Heng-yu~, LI Chun-hui~. Design of Management System of Prediction to Coal and Gas Outburst Based on SuperMap[J]. Journal of Mine Automation, 2010, 36(2): 4-7.
    [9]LI Yang, SHI Bi-ming. Research of Prediction of Coal and Gas Outburst Based on BP Artificial Neural Network Utilizing Bayesian Regularizatio[J]. Journal of Mine Automation, 2009, 35(2): 1-5.
    [10]XU Jian, MA Bi. Application of Distributed Temperature Sensing System of Optical Fiber in Temperature Measurement of Freezing Overburden Section of Coal Mine[J]. Journal of Mine Automation, 2007, 33(2): 99-101.
  • Cited by

    Periodical cited type(22)

    1. 王浩. 选煤厂自动加介质系统的设计. 机械制造. 2024(02): 53-55 .
    2. 刘新辉,袁雪,吕鹏辉,雷伟刚,薛振磊,卜祥宁,沙杰. 选煤厂重介质分选工艺智能化改造及应用. 煤炭加工与综合利用. 2024(03): 10-13+17 .
    3. 申杰. 选煤厂自动化重介质分选技术的应用分析. 矿业装备. 2024(05): 198-200 .
    4. 倪云峰,魏富太,郭苹. 重介质分选过程中悬浮液密度和黏度控制算法研究. 煤炭技术. 2024(08): 296-299 .
    5. 张文军. 选煤厂生产线调度最优决策专家系统设计. 自动化仪表. 2024(07): 75-79 .
    6. 张军,蔚文朋,张硕,姜坤坤,王杰,李少宁,董良,代伟. 基于云熵优化的云模型-组合赋权煤炭分选工艺综合评价方法. 洁净煤技术. 2024(S2): 508-514 .
    7. 王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 .
    8. 郎艳波. 重介质选煤装备的智能化设计改造及应用. 机械研究与应用. 2023(01): 136-139+143 .
    9. 班海俊,武源,张锦龙,刘诗宇,常艇. 李家壕选煤厂智能加介系统研究. 煤炭工程. 2023(04): 168-172 .
    10. 柴进,张海斌,高平小,王湛,乔宏. 基于特征融合的选煤厂振动筛故障诊断方法. 煤炭工程. 2023(06): 158-163 .
    11. 代伟,王昱栋,彭勇. 重介质选煤过程数学模型的研究现状与展望. 控制工程. 2023(10): 1759-1766 .
    12. 吴毅刚,朱陈雨. 重介质悬浮液密度的压差式测量方法研究现状及趋势. 煤炭加工与综合利用. 2023(10): 20-24+28 .
    13. 司海波. 重介质洗煤自动控制系统设计研究. 机械管理开发. 2022(08): 257-259 .
    14. 代伟,王昱栋,董良,赵跃民. 煤炭智能重介分选技术进展与探索. 工矿自动化. 2022(11): 20-26+44 . 本站查看
    15. 周增宏. 选煤厂制介及加介系统设计与应用. 陕西煤炭. 2021(01): 162-166+173 .
    16. 寇金成. 选煤厂重介质悬浮液密度控制方案优化. 山西焦煤科技. 2021(03): 41-43 .
    17. 王庆飞,齐健,王洪兵. 乌东选煤厂重介质浅槽分选系统的分选试验研究. 能源与环保. 2021(09): 260-265 .
    18. 汤优优,喻连香,陈雄. 重介质选矿技术在处理有色金属矿和非金属矿的研究现状及展望. 矿产综合利用. 2021(04): 118-124 .
    19. 王光辉,彭勇,代伟,董良,马小平. 基于灵敏度分析与增强捕食-食饵优化的重介质选煤过程动态模型. 煤炭学报. 2021(09): 2813-2823 .
    20. 邢欢,周增宏. 一种射流喷射式自动加介系统. 洁净煤技术. 2021(S1): 97-101 .
    21. 李志军,韩伟,王光辉. 基于DASCN的重介质浅槽分选灰分预测. 煤炭工程. 2021(S1): 122-126 .
    22. 钱丽霞. 选煤厂智能介质添加系统研究. 内蒙古煤炭经济. 2021(21): 55-57 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (147) PDF downloads (10) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return