HE Yuanyuan, GU Mingyue, LIU Ya. Multi-objective optimization predictive control of high-power explosion-proof permanent synchronous motor[J]. Journal of Mine Automation, 2019, 45(3): 82-89. DOI: 10.13272/j.issn.1671-251x.2018110057
Citation: HE Yuanyuan, GU Mingyue, LIU Ya. Multi-objective optimization predictive control of high-power explosion-proof permanent synchronous motor[J]. Journal of Mine Automation, 2019, 45(3): 82-89. DOI: 10.13272/j.issn.1671-251x.2018110057

Multi-objective optimization predictive control of high-power explosion-proof permanent synchronous motor

More Information
  • In view of problems that traditional multi-objective predictive control method based on weighting method cannot effectively deal with contradiction of objectives and complex design of weight coefficient, a multi-objective optimization predictive control method of high-power explosion-proof permanent magnet motor based on two-layer structure compatible framework was proposed. The d-axis current tracking, q-axis current tracking and midpoint potential balance were divided into compatible optimization layers. By introducing boundary interval, compatible control of the three objectives was effectively realized. Switching loss was divided into optimal optimization layer. A switching frequency measurement method based on extension method was proposed. By approximately measuring switching time of multiple control cycles, average switching frequency of the system was effectively reduced. The simulation results show that the proposed method can achieve compatible control of current command tracking and midpoint potential, and can effectively reduce average switching frequency of the system.
  • Related Articles

    [1]DONG Kangning, YANG Jinfang. Development of mine-used infrared carbon monoxide sensor based on mini pump suctio[J]. Journal of Mine Automation, 2021, 47(6): 128-132. DOI: 10.13272/j.issn.1671-251x.2021010082
    [2]WANG Haibo. Research progress of low-power methane sensor[J]. Journal of Mine Automation, 2021, 47(5): 16-23. DOI: 10.13272/j.issn.1671-251x.17754
    [3]ZHAO Qingchua. Design of carbon monoxide sensor based on wireless Mesh network technology[J]. Journal of Mine Automation, 2016, 42(7): 8-11. DOI: 10.13272/j.issn.1671-251x.2016.07.003
    [4]LU Ping, ZHENG Wei. Fault prediction method of distributed sensor networks system[J]. Journal of Mine Automation, 2016, 42(5): 32-35. DOI: 10.13272/j.issn.1671-251x.2016.05.008
    [5]WU Xing-hua. Design of Wireless Motor-ID Coding Sensor Based on WinCE Embedded System[J]. Journal of Mine Automation, 2008, 34(6): 33-36.
    [6]ZUO Xi-qing, LI Tian-zhe. Application of Sensor Network Based on CAN Bus in Safety Monitoring and Control System[J]. Journal of Mine Automation, 2007, 33(5): 64-66.
    [7]MAO Hui-qiong~, REN Zi-hui~, NIU Guang-dong~, WEI Min~, CHEN Shi-hai~. Design of Portable Detector of Carbon Monoxide Based on MSP430[J]. Journal of Mine Automation, 2007, 33(2): 72-74.
    [8]LI Jun-hong, CUI Yan, LI Chang-qing. Design of Mine-used Carbon Monoxide Sensor[J]. Journal of Mine Automation, 2007, 33(1): 65-67.
    [9]DONG Ke-jian, JIAO Shi-tong, JIA Shao-rui, XUE Hong-mei, LI Li-hong, AN Xi. Application of Laser Range Finder Sensor in Carbonization Thr-vehicle Interlocking System[J]. Journal of Mine Automation, 2004, 30(4): 29-31.
    [10]LIU Zhong-qi, WANG Ru-li. Research on Intelligent Infrared Detector for Carbon Monoxide Used in Mine[J]. Journal of Mine Automation, 2004, 30(4): 1-4.

Catalog

    Article Metrics

    Article views (59) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return