ZHANG Min, WU Xinghua, GENG Pulong, SONG Jiancheng, NIU Honghui, TIAN Dexiang. Influence of insulation resistance asymmetry of mine power cable on AC stray current distributio[J]. Journal of Mine Automation, 2019, 45(2): 65-69. DOI: 10.13272/j.issn.1671-251x.2018080001
Citation: ZHANG Min, WU Xinghua, GENG Pulong, SONG Jiancheng, NIU Honghui, TIAN Dexiang. Influence of insulation resistance asymmetry of mine power cable on AC stray current distributio[J]. Journal of Mine Automation, 2019, 45(2): 65-69. DOI: 10.13272/j.issn.1671-251x.2018080001

Influence of insulation resistance asymmetry of mine power cable on AC stray current distributio

More Information
  • Taking AC power supply system of a mine as research object and combining possible circulation path of AC stray current, a mine AC stray current model was built based on analysis of generation mechanism of mine AC stray current. Distribution laws of AC stray current under different unbalance coefficient of insulation resistance of high voltage or low voltage cable were researched by Matlab/Simulink simulation. The research results show that when insulation resistance of high voltage or low voltage cable is asymmetry, the generated AC stray current mainly distributes in shielding or ground wire and metal net in asymmetry section of insulation resistance. When insulation resistance of the entire cable is asymmetric, AC stray current increases continuously in return path to power grid. With the increase of unbalance coefficient of insulation resistance, effective value of AC stray current flowing through shielding or ground wire, metal net and each ground electrode all increases.
  • Related Articles

    [1]LI Gang, ZHANG Yabing, YANG Qinghe, ZOU Junpeng, CAI Tian, LIU Hang, ZHAO Yiming. Super-resolution reconstruction of rock CT images based on Real-ESRGAN[J]. Journal of Mine Automation, 2023, 49(11): 84-91. DOI: 10.13272/j.issn.1671-251x.2023080093
    [2]MA Xingying, GONG Xuanping, CHENG Xiaoyu, CHENG Cheng, LI Debo. Study on gas desorption dynamic features of mixed coal samples with different particle sizes[J]. Journal of Mine Automation, 2023, 49(8): 142-147. DOI: 10.13272/j.issn.1671-251x.2022110069
    [3]LI Yan, LI Bing, YAO Shuai, YAO Banghua. Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning[J]. Journal of Mine Automation, 2022, 48(4): 53-59. DOI: 10.13272/j.issn.1671-251x.17862
    [4]LI Yunsheng, XU Desheng, MA Zhifeng, ZHOU Haijun, GUO Wenhao. Application of CT inversion monitoring and early warning technology in microseismic anomaly area[J]. Journal of Mine Automation, 2021, 47(12): 39-45. DOI: 10.13272/j.issn.1671-251x.2021030074
    [5]CHEN Haidong, CHEN Menglei, XIAO Zhiguo, AN Fenghua. Research on influence of external moisture on gas desorption characteristics of soft and hard coal[J]. Journal of Mine Automation, 2020, 46(11): 28-33. DOI: 10.13272/j.issn.1671-251x.2020080018
    [6]YUAN Yongbang, YI Hongchu. Detection test of coal seam hydraulic fracturing range based on multi-frequency synchronous electromagnetic wave CT technology[J]. Journal of Mine Automation, 2020, 46(8): 51-57. DOI: 10.13272/j.issn.1671-251x.2020030039
    [7]XIA Hui, CAI Feng, YUAN Yuan, XU Chao. Experimental study on gas adsorption and desorption characteristics of coal sample under variable temperature and pressure[J]. Journal of Mine Automation, 2020, 46(7): 89-93. DOI: 10.13272/j.issn.1671-251x.2019100005
    [8]SONG Hongli, ZHAO Yang, LI Qingzhao. Gas seepage law and drainage borehole layout considering coal body creep[J]. Journal of Mine Automation, 2019, 45(11): 42-48. DOI: 10.13272/j.issn.1671-251x.2019060037
    [9]LIU Shaofei, WANG Guofu, ZHANG Faquan, YE Jincai. Design of coal seam gas pressure monitoring system based on 6LoWPA[J]. Journal of Mine Automation, 2018, 44(7): 99-103. DOI: 10.13272/j.issn.1671-251x.2018010089
    [10]ZHOU Wei, YUAN Liang, XUE Junhua, HE Guanghui, LUO Yong, DUAN Changrui, REN Bo. Experimental analysis of isothermal adsorption and desorption characteristics of gas in coal samples with multi grain sizes: A case study on No.3 coal in Sihe Coal Mine[J]. Journal of Mine Automation, 2018, 44(1): 26-30. DOI: 10.13272/j.issn.1671-251x.17277
  • Cited by

    Periodical cited type(7)

    1. 李志强. 卸荷及瓦斯作用下煤体冲击倾向性特征试验研究. 煤矿安全. 2024(04): 55-65 .
    2. 李均奕,王伟,曹亚军,陈超维,朱其志. 考虑水-力耦合和不同应力路径的砂岩卸荷力学特性试验. 河海大学学报(自然科学版). 2023(03): 135-142 .
    3. 于秋南,李彦斌. 不同压力CO_2作用对煤体冲击倾向性的影响研究. 矿业研究与开发. 2023(09): 134-140 .
    4. 杨永亮,任建慧,李宣良,杜涛涛. 循环应力损伤对煤体冲击倾向性影响研究. 工矿自动化. 2023(10): 142-150 . 本站查看
    5. 刘跃东,康红普. 不同应力路径下含水泥岩崩解破坏跨尺度分形规律研究. 岩石力学与工程学报. 2023(S2): 4162-4173 .
    6. 李果,张传玖,杨永亮. 冲击倾向性对煤体动态断裂行为的影响研究. 煤矿安全. 2023(12): 88-96 .
    7. 孙如达,张传玖,李红平,贾兵兵. 尺寸效应对煤体冲击倾向性的影响研究. 煤炭科学技术. 2022(S2): 170-179 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (81) PDF downloads (11) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return