Analysis and numerical simulation on parameter optimization of low hardness coal pre-splitting blasting
1.
Xinbaima Mining Co., Ltd., Pangang Group, Panzhihua 617209,China
2.
CCCC Second Harbour Engineering Company, Wuhan 430040, China
3.
School of Resources and Safety Engineering, Central South Universi
More Information
Abstract
In view of the characteristics of low coal hardness and permeability of a certain area, in order to confirm suitable cartridge radius and non-coupling charging coefficient, and improve coal blasting efficiency in the area, software of ANSYS/LS_DYNA was used for simulation analysis of blast cracking, and radius of compression zone and the maximum crack length under different cartridge radius and non-coupling charging coefficient were obtained. The analysis results show that the most suitable cartridge radius is 30 mm, and the non-coupling charging coefficient is 1.5 when the coal is on the pre-splitting blasting anti-reflection; in a certain range, blast cracking effect of high hardness coal is better than low hardness coal, the main performance is that for the high hardness coal, coal crushing area radius is relatively small and cracks number is more than low hardness coal, while the crack length is also large.
Related Articles
[1] ZHANG Jintao, FU Xiang, WANG Ranfeng, WANG Hongwei. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face [J]. Journal of Mine Automation, 2022, 48(10): 20-25. DOI: 10.13272/j.issn.1671-251x.17989
[2] REN Huaiwei, ZHANG Shuai, ZHANG Desheng, ZHOU Jie, REN Changzhong, MIAO Xing, LIU Ke, HOU Wei. Research status and development trend of hydraulic support precision pushing and fast follow-up technology [J]. Journal of Mine Automation, 2022, 48(8): 1-9, 15. DOI: 10.13272/j.issn.1671-251x.2022060016
[3] LIU Qing, HAN Xiuqi, XU Lanxin, QIN Wenguang. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face [J]. Journal of Mine Automation, 2020, 46(5): 43-48. DOI: 10.13272/j.issn.1671-251x.17520
[4] GAO Weiyong, ZHANG Minjuan. Research on following automation technology of hydraulic support on fully—mechanized coal mining face [J]. Journal of Mine Automation, 2018, 44(11): 14-17. DOI: 10.13272/j.issn.1671—251x.2018050040
[5] WANG Feng. Research of precise pushing control scheme for hydraulic support and its applicatio [J]. Journal of Mine Automation, 2017, 43(5): 6-9. DOI: 10.13272/j.issn.1671-251x.2017.05.002
[6] SHI Yong, LIN Jiang, CUI Zhifang, YUAN Xiaoqin. Mathematical model of automatic following control in the middle of fully mechanized mining face [J]. Journal of Mine Automation, 2016, 42(11): 14-19. DOI: 10.13272/j.issn.1671-251x.2016.11.004
[7] LI Jun, LIN Fuya. Research of automatic control method of shearer in machinery-tracked automatio [J]. Journal of Mine Automation, 2014, 40(2): 1-4. DOI: 10.13272/j.issn.1671-251x.2014.02.001
[8] ZHU Jin-yu, LI Guo-lia. Design of machinery-tracked automatic system of hydraulic support [J]. Journal of Mine Automation, 2013, 39(12): 1-4. DOI: 10.7526/j.issn.1671-251X.2013.12.001
[9] ZHANG She. Development of coal mine automatio [J]. Journal of Mine Automation, 2013, 39(2): 27-33.
Cited by
Periodical cited type(12)
1.
何勇华. 综放工作面液压支架直线度调整技术研究与实践. 煤矿机械. 2025(02): 153-157 .
2.
马伟佳,范玫杉,徐冠宇. 煤矿机器人研究进展、关键技术及发展趋势. 机器人技术与应用. 2024(04): 3-10 .
3.
索永录. 智能综采机组控制目标及采煤机割煤高度控制方法. 西安科技大学学报. 2023(01): 9-17 .
4.
宋单阳,杨金衡,陶心雅,卢春贵,田慕琴,宋建成. 基于非完整性约束的采煤机定位方法. 工矿自动化. 2022(07): 52-57 .
本站查看
5.
高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
6.
贺建伟. 煤矿井下连续采煤机定位方法研究. 工矿自动化. 2021(10): 42-48 .
本站查看
7.
王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术. 工矿自动化. 2020(05): 39-42+53 .
本站查看
8.
李文国,刘鑫. 露天矿边帮压煤无人开采导航技术应用研究. 煤炭工程. 2020(06): 59-61 .
9.
张先韬. 煤矿测井用经纬度获取和磁偏角计算. 矿山测量. 2019(02): 74-78+88 .
10.
闫建国. 基于惯性导航的工作面直线度检测与控制技术的研究. 机械管理开发. 2019(08): 135-136+149 .
11.
陈伟. 煤矿井下精确定位系统研究. 工矿自动化. 2019(12): 86-90 .
本站查看
12.
王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望. 工矿自动化. 2018(11): 18-24 .
本站查看
Other cited types(8)