ZHANG Jintao, FU Xiang, WANG Ranfeng, et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25. DOI: 10.13272/j.issn.1671-251x.17989
Citation: ZHANG Jintao, FU Xiang, WANG Ranfeng, et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25. DOI: 10.13272/j.issn.1671-251x.17989

Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face

More Information
  • Received Date: July 29, 2022
  • Revised Date: September 23, 2022
  • Available Online: October 12, 2022
  • The intelligent working face has abnormal working conditions such as lost support, uneven straightness, and support skew after the automatic following of hydraulic support. Therefore, manual regulation and control are needed. At present, the research lacks the knowledge discovery of manual regulation and control working conditions after the hydraulic support automation in the production process of the intelligent working face. This is not conducive for workers to quickly judge the number of hydraulic support requiring manual regulation and control. In order to solve the above problems, based on the identification of the number of hydraulic support that is not up to the standard after the hydraulic support automation, a manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face is put forward. Firstly, the historical data of the working face is analyzed. It is concluded that after the automatic following of the hydraulic support is finished, three characteristic values can be used as important characteristics for judging whether the hydraulic support carries out manual regulation and control after the automatic following of the hydraulic support. The characteristic values include the distance of the automatic following of the hydraulic support, the stroke variation of the pushing oil cylinder before and after the automatic following of the hydraulic support, and the absolute difference between the number of the hydraulic support at the position of the shearer and the number of the judged hydraulic support. According to the above conclusion, the structure of the manual control decision model after the hydraulic support cluster automation is proposed. The data acquisition module is used for providing the original data. The data preprocessing module prepares the original data by outlier processing, filtering, sorting and correlation analysis. The characteristic engineering module calculates and standardizes the above three characteristic values to provide a sample set for the classification model. After the classification model divides the sample set, the ID3 decision tree is used for classification. Finally, the number of hydraulic supports needing normal working conditions and the number of hydraulic supports nedeing manual control are output. The results of the model evaluation show that, compared with the traditional K-nearest neighbor (KNN), support vector machine (SVM), logical regression (LR) classification algorithms, the training set accuracy of the ID3 decision tree based classification model for the working conditions of hydraulic supports in the middle of the intelligent working face is 92.27%. The test set accuracy is 93.75%. The model can better distinguish the manual control hydraulic support number after automation.
  • [1]
    王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [2]
    王国法,庞义辉,任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报,2020,2(1):5-19.

    WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of Mining and Strata Control Engineering,2020,2(1):5-19.
    [3]
    王国法,刘峰,庞义辉,等. 煤矿智能化−煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [4]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [5]
    葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46.

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
    [6]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [7]
    任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935.

    REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935.
    [8]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [9]
    张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25. DOI: 10.13272/j.issn.1671-251x.2021090041
    [10]
    路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.

    LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.
    [11]
    ZHANG Lin,WANG Zhongbin,TAN Chao,et al. A fruit fly-optimized kalman filter algorithm for pushing distance estimation of a hydraulic powered roof support through tuning covariance[J]. Applied Sciences,2016,6(10):299. DOI: 10.3390/app6100299
    [12]
    FAN Qigao,LI Wei,WANG Yuqiao,et al. Control strategy for an intelligent shearer height adjusting system[J]. Mining Science & Technology(China),2010,20(6):908-912.
    [13]
    牛剑峰. 受汽车无人驾驶启发的液压支架智能协同控制[J]. 工矿自动化,2020,46(5):54-56,75.

    NIU Jianfeng. Intelligent cooperative control of hydraulic support inspired by driveless car[J]. Industry and Mine Automation,2020,46(5):54-56,75.
    [14]
    王统诚. 液压支架自动化跟机系统研究[D]. 青岛: 山东科技大学, 2018.

    WANG Tongcheng. Research on hudraulic support automatic system[D]. Qingdao: Shandong University of Science and Technology, 2018.
    [15]
    刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48.

    LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48.
    [16]
    付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077.

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
  • Related Articles

    [1]JI Xianliang, ZHANG Wenjie, WANG Yuqiang, LIU Yong, TIAN Zuzhi, FU Zheng. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation, 2024, 50(5): 75-83. DOI: 10.13272/j.issn.1671-251x.2024030028
    [2]GONG Shixin, ZHAO Guorui, WANG Fei. Review on the application of machine vision perception theory and technology in coal industry[J]. Journal of Mine Automation, 2023, 49(5): 7-21. DOI: 10.13272/j.issn.1671-251x.2022100087
    [3]ZHANG Xuhui, WANG Heng, SHEN Qifeng, YANG Wenjuan, ZHANG Chao. Improvement of position and posture measurement system for boom-type roadheader based on machine vision[J]. Journal of Mine Automation, 2022, 48(5): 58-64. DOI: 10.13272/j.issn.1671-251x.2021100051
    [4]WEI Dong, WANG Zhongbin, SI Lei, TAN Chao, LU Xuliang. Research on precise detection method of personnel in shearer operation area[J]. Journal of Mine Automation, 2022, 48(2): 19-28. DOI: 10.13272/j.issn.1671-251x.2021110069
    [5]ZHU Xiaojuan, ZHANG Hao. Research on task allocation of edge computing in intelligent coal mine[J]. Journal of Mine Automation, 2021, 47(6): 32-39. DOI: 10.13272/j.issn.1671-251x.2021050011
    [6]ZHANG Zhiqiang, FENG Wei, ZHAO Xiaohu, YOU Xingyi. Edge computing-oriented scraper detection method for coal preparation plants[J]. Journal of Mine Automation, 2021, 47(4): 92-97. DOI: 10.13272/j.issn.1671-251x.2020100001
    [7]WANG Yudong, DAI Wei, MA Xiaoping. Rapid detection method of bolt abnormality based on machine visio[J]. Journal of Mine Automation, 2021, 47(4): 13-18. DOI: 10.13272/j.issn.1671-251x.2021020038
    [8]YE Jingdong, ZONG Shousong, ZHU Meiqiang, LI Ming. Detection system for coal mine electrical inspection instrument with digital display based on machine visio[J]. Journal of Mine Automation, 2016, 42(9): 13-16. DOI: 10.13272/j.issn.1671-251x.2016.09.004
    [9]LI Hao-min, LU Jian-jun, WEI Che. Research of coal mine safety monitoring and early warning system based on cloud computing[J]. Journal of Mine Automation, 2013, 39(3): 46-49.
    [10]TIAN Yua. Brief Discussion of Application Prospect of Technology of Machine Vision in Coal Mine[J]. Journal of Mine Automation, 2010, 36(5): 30-32.
  • Cited by

    Periodical cited type(36)

    1. 方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 .
    2. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 .
    3. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 .
    4. 刘文梅. 基于煤流量监控的带式输送机监测方案设计. 机械管理开发. 2024(02): 243-244+247 .
    5. 岑梁,尹小明,黄海棠,胡文博,张世荣. 带式输送系统节能优化调度研究. 制造业自动化. 2024(05): 114-119 .
    6. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    7. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    8. 王涛. 基于改进MobileNet的带式输送机煤量检测研究. 能源与环保. 2024(07): 198-202 .
    9. 尹瑞,张冬雪,倪强. 基于数组的刮板输送机运载模型及煤量计算算法研究. 工矿自动化. 2024(08): 84-90 . 本站查看
    10. 段树深. 基于ROI边缘图像直线特征的井下带式输送机跑偏故障检测方法. 中国矿业. 2024(10): 162-167 .
    11. 刘西尧,纪妙,陈恩博,余宝意,曾庆杰,李海生. 基于机器视觉的烟草输送机皮带跑偏识别方法研究. 设备管理与维修. 2024(19): 165-169 .
    12. 左明明,张习,杨子豪,孙其飞,张梦超,张媛,李虎. 基于深度学习的输送带跑偏状态智能监测方法. 工矿自动化. 2024(12): 166-172+182 . 本站查看
    13. 尚伟栋. 矿用带式输送机过载传感检测中的模糊阈值判断. 煤矿机械. 2023(04): 197-200 .
    14. 秦亚敏,张雷,赵东哲,张金辉,贾英新,靳晔. 基于机器视觉的带式输送机跑偏监测预警方法. 煤矿机械. 2023(05): 165-167 .
    15. 曾飞,胡文祥,高彦鑫,宋杰杰. 基于激光扫描的输送带横向跑偏检测系统. 制造业自动化. 2023(05): 21-24 .
    16. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 .
    17. 李阿红. 基于图像处理的矿用带式输送机系统设计及其能效分析. 能源与环保. 2023(07): 228-232+238 .
    18. 曾飞,陶玉衡,苏俊彬,李翔. 融合ResNet18和Deconvolution的输送带横向跑偏检测方法. 现代制造工程. 2023(08): 121-126 .
    19. 毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 . 本站查看
    20. 高京,董华丛. 基于目标检测的铁路货车承载鞍错位故障识别. 自动化技术与应用. 2023(10): 63-67 .
    21. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 .
    22. 杨志方,张立亚,郝博南,刘渊,赵青. 基于双流融合网络的输送带跑偏检测方法. 煤炭科学技术. 2023(S2): 259-267 .
    23. 王桂梅,李学晖,杨立洁,刘杰辉. 基于深度学习的永磁直驱带式输送机煤量检测方法研究. 煤炭技术. 2022(01): 188-190 .
    24. 邢建旭,岑梁,卢峰,黄益军,胡文博,邱泽晶,张世荣. 基于带式输送机的仓储转运系统优化调度研究. 机电工程. 2022(03): 402-410 .
    25. 屠鑫. 基于图像识别的中长跑运动员摆臂高度校准方法研究. 河北北方学院学报(自然科学版). 2022(07): 7-12+18 .
    26. 白光星,陈炜乐,孙勇,宋双林,李国芳,王彩萍,王伟峰,康付如. 煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展. 煤矿安全. 2022(09): 47-54 .
    27. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 .
    28. 刘孝军,王飞. 基于AI的煤矿视频智能分析技术. 煤炭科学技术. 2022(S2): 260-264 .
    29. 姜阔胜,李良和,王开松,胡坤. 煤矿输送带修复点定位及监测系统设计. 煤矿机械. 2021(02): 1-4 .
    30. 王平. 基于数字图像处理的输送带跑偏状态实时监测技术. 煤矿机械. 2021(02): 168-170 .
    31. 云艳. 矿用带式输送机跑偏机理及纠偏系统设计. 能源与环保. 2021(12): 264-268 .
    32. 李林. 矿用皮带输送机纠偏装置的分析研究. 机械管理开发. 2020(08): 74-75+78 .
    33. 高云飞. 带式输送机托辊结构受力分析. 中国石油和化工标准与质量. 2020(15): 157-158 .
    34. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 .
    35. 陈小霞,徐伟同,侯飞,高奎,刘兆雪,温玺杰,王兵,王延勇,王晓倩. 基于图像处理的煤炭量AI识别系统的设计. 选煤技术. 2020(06): 75-80 .
    36. 成新文. 带式输送机防跑偏技术分析研究. 内蒙古煤炭经济. 2020(15): 47-48 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (269) PDF downloads (52) Cited by(51)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return