Design of antenna of intrinsic safety wireless pressure sensor
More Information
Abstract
The paper proposed a design scheme of antenna structure of underground intrinsic safety wireless pressure sensor, and researched impact of opening parameters of metal shell and antenna position on antenna gain. The simulation and test results show that antenna gain increases with increase of length and width of metal shell opening, but increased amplitude gradually decreases; antenna gain increases with decrease of distance between antenna and opening; antenna gain increases about 2 dB when metal shell thickness of opening side reduces 1 mm; antenna gain changing caused by millimeter level changing of metal shell space height almost can be ignored; antenna gain achieves the best and antenna transmission distance is about 14 m when metal shell with length and width of opening are 1/4 and 1/8 of antenna wavelength respectively, thickness is 2 mm, space height is 41 mm, and distance between antenna and opening is 1.4 mm.
Related Articles
[1] SHANGGUAN Xingchi, ZHANG Xiaoliang, LIU Chao, SHI Hui, WANG Jiayu. Research on equipment fault diagnosis based on improved feature extraction algorithm and capsule network [J]. Journal of Mine Automation, 2024, 50(S1): 146-150.
[2] CHEN Jianhua, MA Bao, WANG Meng. A method for simplifying surface point cloud data of coal mine roadways based on secondary feature extraction [J]. Journal of Mine Automation, 2023, 49(12): 114-120. DOI: 10.13272/j.issn.1671-251x.2023050029
[3] ZHANG Meng, MIAO Changyun, MENG Deju. Research on a bearing early fault features extraction method [J]. Journal of Mine Automation, 2020, 46(4): 85-90. DOI: 10.13272/j.issn.1671-251x.2019090020
[4] ZHANG Linfeng, TIAN Muqin, SONG Jiancheng, HE Ying, FENG Junling, YANG Xiang. Feature extraction of vibration signal of roadheader based on singular value decompositio [J]. Journal of Mine Automation, 2019, 45(1): 28-34. DOI: 10.13272/j.issn.1671-251x.2018070035
[5] GUAN Zenglun, GU Jun, ZHAO Guangyuan. Underground video stitching algorithm based on improved speeded up robust features [J]. Journal of Mine Automation, 2018, 44(11): 69-74. DOI: 10.13272/j.issn.1671—251x.17342
[6] MI Qiang, XU Yan, LIU Bin, XU Yunjie. Extraction method of texture feature of images of coal and gangue [J]. Journal of Mine Automation, 2017, 43(5): 26-30. DOI: 10.13272/j.issn.1671-251x.2017.05.007
[7] SUN Jiping, YANG Kun. A coal-rock image feature extraction and recognition method [J]. Journal of Mine Automation, 2017, 43(5): 1-5. DOI: 10.13272/j.issn.1671-251x.2017.05.001
[8] TAN Chunchao, YANG Jieming. Research on extraction of image gray information and texture features of coal and gangue image [J]. Journal of Mine Automation, 2017, 43(4): 27-31. DOI: 10.13272/j.issn.1671-251x.2017.04.007
[9] HUANG Yu, ZHANG Yingjun, PAN Lihu. Otherness feature extraction method for underground image based on Shearlet transform [J]. Journal of Mine Automation, 2016, 42(3): 64-68. DOI: 10.13272/j.issn.1671-251x.2016.03.015
[10] WU Yunxia, ZHANG Haopeng, DU Dongbi. Feature extraction method for human ear image and its application in miner identificatio [J]. Journal of Mine Automation, 2015, 41(11): 30-34. DOI: 10.13272/j.issn.1671-251x.2015.11.008
Cited by
Periodical cited type(18)
1.
李富强. 基于深度卷积神经网络与多源信号的煤岩识别研究. 煤炭技术. 2025(03): 233-238 .
2.
高如新,杜亚博,常嘉浩. 基于改进YOLOX-S的轻量化煤矸石检测方法研究. 河南理工大学学报(自然科学版). 2024(04): 133-140 .
3.
陈晓杰,王亮,赵美玲,刘光伟,涂俊雄. 基于ECA-YOLOv5s的煤矿带式输送机异物检测网络模型. 采矿技术. 2024(04): 316-324 .
4.
陈世涛,张敏,栗超. 基于YOLOv5的带式输送机煤堆异物检测. 洁净煤技术. 2024(S2): 12-18 .
5.
涂灿. VCS智能干选机的试验研究. 煤炭加工与综合利用. 2023(06): 37-41 .
6.
高如新,常嘉浩,杜亚博,刘群坡. 基于改进YOLOv5s的煤矸石目标检测算法. 电子测量技术. 2023(13): 95-101 .
7.
汪岩,李自强. 基于AI图像处理的煤矸石特征提取及分类方法. 煤炭技术. 2023(11): 231-233 .
8.
曹现刚,刘思颖,王鹏,许罡,吴旭东. 面向煤矸分拣机器人的煤矸识别定位系统研究. 煤炭科学技术. 2022(01): 237-246 .
9.
倪云峰,封子杰,郭苹,王静. 基于卷积神经网络的煤矸石识别算法研究. 现代电子技术. 2022(10): 57-62 .
10.
张红,李晨阳. 基于光学图像的煤矸石识别方法综述. 煤炭工程. 2022(07): 159-163 .
11.
申利飞,田子建,白林绪. 改进纹理模糊筛选下煤矸石X射线图像处理. 激光与红外. 2022(07): 1090-1097 .
12.
陈彪,卢兆林,代伟,邵明,于大伟,董良. 基于轻量化HPG-YOLOX-S模型的煤矸石图像精准识别. 工矿自动化. 2022(11): 33-38 .
本站查看
13.
郑新涛,苏道玉. 基于小波矩的智能手绘草图识别系统设计. 现代电子技术. 2021(12): 177-181 .
14.
胡璟皓,高妍,张红娟,靳宝全. 基于深度学习的带式输送机非煤异物识别方法. 工矿自动化. 2021(06): 57-62+90 .
本站查看
15.
王冠军,苏婷婷,刘文博,钱智平,李佳泽. 基于EAIDK的智能煤矸分拣系统设计. 工矿自动化. 2020(01): 105-108 .
本站查看
16.
柴炳升,胡峰. 石槽村选煤厂重介质浅槽分选工艺探究. 煤炭加工与综合利用. 2020(08): 33-34+38 .
17.
章振原,秦训鹏,李轶峰. 基于机器视觉的废旧有色金属碎料识别方法. 激光与光电子学进展. 2020(16): 194-201 .
18.
潘卫东,李新源,员明涛,袁永康,杨克虎. 基于顶煤运移跟踪仪的自动化放煤技术原理及应用. 煤炭学报. 2020(S1): 23-30 .
Other cited types(31)