Citation: | WANG Hongwei, QIE Chenfei, FU Xiang, et al. Intelligent decision-making model of multi-behavior collaborative control in coal mine excavation[J]. Journal of Mine Automation,2023,49(6):120-127. DOI: 10.13272/j.issn.1671-251x.18114 |
[1] |
康红普,姜鹏飞,刘畅. 煤巷智能快速掘进技术与装备的发展方向[J]. 采矿与岩层控制工程学报,2023,5(2):5-7.
KANG Hongpu,JIANG Pengfei,LIU Chang. Development of intelligent rapid excavation technology and equipment for coal mine roadways[J]. Journal of Mining and Strata Control Engineering,2023,5(2):5-7.
|
[2] |
王国法. 加快煤矿智能化建设 推进煤炭行业高质量发展[J]. 中国煤炭,2021,47(1):2-10. DOI: 10.3969/j.issn.1006-530X.2021.01.002
WANG Guofa. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry[J]. China Coal,2021,47(1):2-10. DOI: 10.3969/j.issn.1006-530X.2021.01.002
|
[3] |
王步康. 煤矿巷道掘进技术与装备的现状及趋势分析[J]. 煤炭科学技术,2020,48(11):1-11. DOI: 10.13199/j.cnki.cst.2020.11.001
WANG Bukang. Current status and trend analysis of readway driving technology and equipment in coal mine[J]. Coal Science and Technology,2020,48(11):1-11. DOI: 10.13199/j.cnki.cst.2020.11.001
|
[4] |
范京道,魏东,汪青仓,等. 智能化建井理论技术研究与工程实践[J]. 煤炭学报,2023,48(1):470-483.
FAN Jingdao,WEI Dong,WANG Qingcang,et al. Theory and practice of intelligent coal mine shaft excavation[J]. Journal of China Coal Society,2023,48(1):470-483.
|
[5] |
郝建生. 煤矿巷道掘进装备关键技术现状和展望[J]. 煤炭科学技术,2014,42(8):69-74. DOI: 10.13199/j.cnki.cst.2014.08.018
HAO Jiansheng. Present status and outlook of key technology for mine roadway heading equipment[J]. Coal Science and Technology,2014,42(8):69-74. DOI: 10.13199/j.cnki.cst.2014.08.018
|
[6] |
杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.
YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
|
[7] |
马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.
MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
|
[8] |
吴淼,李瑞,王鹏江,等. 基于数字孪生的综掘巷道并行工艺技术初步研究[J]. 煤炭学报,2020,45(增刊1):506-513. DOI: 10.13225/j.cnki.jccs.2019.1453
WU Miao,LI Rui,WANG Pengjiang,et al. Preliminary study on the parallel technology of fully mechanized roadway based on digital twin[J]. Journal of China Coal Society,2020,45(S1):506-513. DOI: 10.13225/j.cnki.jccs.2019.1453
|
[9] |
付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339
FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339
|
[10] |
马宏伟,王世斌,毛清华,等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报,2021,46(1):310-320. DOI: 10.13225/j.cnki.jccs.yg20.1904
MA Hongwei,WANG Shibin,MAO Qinghua,et al. Key common technology of intelligent heading in coal mine roadway[J]. Journal of China Coal Society,2021,46(1):310-320. DOI: 10.13225/j.cnki.jccs.yg20.1904
|
[11] |
马宏伟,王鹏,王世斌,等. 煤矿掘进机器人系统智能并行协同控制方法[J]. 煤炭学报,2021,46(7):2057-2067. DOI: 10.13225/j.cnki.jccs.JJ21.0820
MA Hongwei,WANG Peng,WANG Shibin,et al. Intelligent parallel cooperative control method of coal mine excavation robot system[J]. Journal of China Coal Society,2021,46(7):2057-2067. DOI: 10.13225/j.cnki.jccs.JJ21.0820
|
[12] |
史忠植,张子云. 基于主体的智能协同决策支持系统[J]. 智能系统学报,2008,3(5):377-383.
SHI Zhongzhi,ZHANG Ziyun. Agent-based intelligent collaborative decision support system[J]. CAAI Transactions on Intelligent Systems,2008,3(5):377-383.
|
[13] |
呼守信. 高效快速掘进系统的协同控制[J]. 工矿自动化,2017,43(4):86-88.
HU Shouxin. Cooperative control of high-efficient and rapid excavation system[J]. Industry and Mine Automation,2017,43(4):86-88.
|
[14] |
COTSAKIS R, ST-ONGE D, BELTRAME G. Decentralized collaborative transport of fabrics using micro-UAVs[C]. International Conference on Robotics and Automation, Montreal, 2018. DOI: 10.1109/ICRA.2019.8793778.
|
[15] |
TAHIR N, PARASURAMAN R. Mobile robot control and autonomy through collaborative simulation twin[EB/OL]. [2023-04-10]. https://arxiv.org/abs/2303.06172.
|
[16] |
蒋建国,苏兆品,齐美彬,等. 基于强化学习的多任务联盟并行形成策略[J]. 自动化学报,2008,34(3):349-352. DOI: 10.3724/SP.J.1004.2008.00349
JIANG Jianguo,SU Zhaopin,QI Meibin,et al. Multi-task coalition parallel formation strategy based on reinforcement learning[J]. Acta Automatica Sinica,2008,34(3):349-352. DOI: 10.3724/SP.J.1004.2008.00349
|
[17] |
石鹏. 综掘成套装备协同控制研究[D]. 阜新: 辽宁工程技术大学, 2020.
SHI Peng. Research on cooperative control of comprehensive digging equipment[D]. Fuxin: Liaoning Technical University, 2020.
|
[18] |
程韬波,李晓晓,徐智浩,等. 基于递归神经网络的多机器人智能协同控制[J]. 机电工程技术,2020,49(5):1-4. DOI: 10.3969/j.issn.1009-9492.2020.05.001
CHENG Taobo,LI Xiaoxiao,XU Zhihao,et al. Intelligent cooperative control of multiple manipulators based on recurrent neural network[J]. Mechanical & Electrical Engineering Technology,2020,49(5):1-4. DOI: 10.3969/j.issn.1009-9492.2020.05.001
|
[19] |
张兴国,张柏,唐玉芝,等. 多机器人系统协同作业策略研究及仿真实现[J]. 机床与液压,2017,45(17):44-51. DOI: 10.3969/j.issn.1001-3881.2017.17.011
ZHANG Xingguo,ZHANG Bai,TANG Yuzhi,et al. Research of the cooperative work strategy in multi-robot system and simulation implement[J]. Machine Tool & Hydraulics,2017,45(17):44-51. DOI: 10.3969/j.issn.1001-3881.2017.17.011
|
[20] |
王国庆,许红盛,王恺睿. 煤矿机器人研究现状与发展趋势[J]. 煤炭科学技术,2014,42(2):73-77.
WANG Guoqing,XU Hongsheng,WANG Kairui. Research status and development trend of coal mining robots[J]. Coal Science and Technology,2014,42(2):73-77.
|
[21] |
武星,赵龙,武靖洋,等. 基于改进leader-follower策略的AGV多驱动单元协同控制[J]. 机械设计与制造工程,2018,47(2):35-39. DOI: 10.3969/j.issn.2095-509X.2018.02.008
WU Xing,ZHAO Long,WU Jingyang,et al. Coordinated control of multiple driving units of an automated guided vehicle based on an improved leader-follower strategy[J]. Machine Design and Manufacturing Engineering,2018,47(2):35-39. DOI: 10.3969/j.issn.2095-509X.2018.02.008
|
[22] |
朱雪燕. 矿用皮带机协同控制系统开发[D]. 芜湖: 安徽工程大学, 2018.
ZHU Xueyan. Mine belt conveyor cooperative control system development[D]. Wuhu: Anhui Polytechnic University, 2018.
|
[23] |
PIERPAOLI P, DOAN T T, ROMBERG J, et al. A reinforcement learning framework for sequencing multi-robot behaviors[EB/OL]. [2023-04-10]. https://arxiv.org/abs/1909.05731v2.
|
[24] |
ZHU Minglei, HUANG Cong, QIU Zhiqiang, et al. Parallel image-based visual servoing/force control of a collaborative delta robot[J]. Frontiers in Neurorobotics, 2022, 16. DOI: 10.3389/fnbot.2022.922704.
|
[25] |
HUANG Zichao,CHU Duanfeng,WU Chaozhong,et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(3):959-974.
|
[26] |
李波,刘宾,高明,等. 考虑任务协作的煤矿掘进配套多设备协同控制方法[J]. 机械与电子,2022,40(10):67-71.
LI Bo,LIU Bin,GAO Ming,et al. Coal mine excavation supporting multi-equipment cooperative control method considering task cooperation[J]. Machinery & Electronics,2022,40(10):67-71.
|
[27] |
王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083.
WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083.
|
[28] |
毛君,董钰峰,卢进南,等. 巷道掘进截割钻进先进技术研究现状及展望[J]. 煤炭学报,2021,46(7):2084-2099. DOI: 10.13225/j.cnki.jccs.JJ21.0887
MAO Jun,DONG Yufeng,LU Jinnan,et al. Research status and prospect of advanced technology of roadway excavation cutting and drilling equipment[J]. Journal of China Coal Society,2021,46(7):2084-2099. DOI: 10.13225/j.cnki.jccs.JJ21.0887
|
[29] |
王虹,王建利,张小峰. 掘锚一体化高效掘进理论与技术[J]. 煤炭学报,2020,45(6):2021-2030.
WANG Hong,WANG Jianli,ZHANG Xiaofeng. Theory and technology of efficient roadway advance with driving and bolting integration[J]. Journal of China Coal Society,2020,45(6):2021-2030.
|
[30] |
杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452
YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452
|
[1] | WU Wenqian, ZHEN Weiqi, MEN Shaobin, ZHAO Longlong. Decision model of shearer drum intelligent height adjustment based on rough set-RBF neural network[J]. Journal of Mine Automation, 2024, 50(S2): 167-172. |
[2] | CHENG Jian, SHI Linsong, LUO Yi, ZHOU Tianbai, YANG Lingkai. Real time identification of microseismic events based on ridge regression improved normative variable analysis[J]. Journal of Mine Automation, 2024, 50(3): 92-98. DOI: 10.13272/j.issn.1671-251x.18170 |
[3] | LI Shanhua, XIAO Tao, LI Xiaoli, YANG Fazhan, YAO Yong, ZHAO Peipei. Miner action recognition model based on DRCA-GCN[J]. Journal of Mine Automation, 2023, 49(4): 99-105, 112. DOI: 10.13272/j.issn.1671-251x.2022120023 |
[4] | XIANG Xueyi, LEI Zhipeng, LI Linbo, REN Ruibin, LI Jie, WANG Feiyu. Action recognition method for mine kilometer directional drilling rig[J]. Journal of Mine Automation, 2022, 48(9): 140-147, 156. DOI: 10.13272/j.issn.1671-251x.2022030103 |
[5] | DANG Weichao, YAO Yuan, BAI Shangwang, GAO Gaimei, WU Zhefeng. Research on unloading drill-rod action identification in coal mine water exploratio[J]. Journal of Mine Automation, 2020, 46(7): 107-112. DOI: 10.13272/j.issn.1671-251x.2019070074 |
[6] | HU Shouxi. Cooperative control of high-efficient and rapid excavation system[J]. Journal of Mine Automation, 2017, 43(4): 86-88. DOI: 10.13272/j.issn.1671-251x.2017.04.020 |
[7] | WANG Liang. Detection and early warning of coal mine underground safety event based on event drive[J]. Journal of Mine Automation, 2016, 42(8): 33-37. DOI: 10.13272/j.issn.1671-251x.2016.08.009 |
[8] | LIU Guo-peng, JIA You-sheng, ZHANG Bo, WU Peng. Application of CANopen Protocol in Electrical Control System of Coal Mine Excavating Equipment[J]. Journal of Mine Automation, 2011, 37(9): 10-13. |
[9] | YU Yue-sen, QIAN Zhen-hua, PENG Li-ming, LIU Jia. Setting Method of Baud Rate of CAN Bus and Its Error Analysis[J]. Journal of Mine Automation, 2009, 35(6): 52-55. |
[10] | ZHANG Lin. Network Linking System with PLC of Series SYSMAC[J]. Journal of Mine Automation, 2000, 26(5): 31-32. |
1. |
余彦,蔡霖,张冲,冀弘帅. 基于密度聚类的复杂装备健康监测方法. 指挥控制与仿真. 2024(02): 69-77 .
![]() | |
2. |
田劼,田壮,郭红飞,刘凝哲,马建武. 矿用钢丝绳损伤检测磁通回路优化设计. 工矿自动化. 2022(03): 118-122 .
![]() | |
3. |
祁东明. 海洋石油平台注水泵在线监测与故障智能诊断技术应用. 石油工业技术监督. 2021(03): 9-13 .
![]() | |
4. |
钱柄旭,贾清华,付志明,宋狄,徐桂云. 矿井提升机刚性罐道滚轮充发电装置. 煤矿机械. 2021(04): 115-117 .
![]() | |
5. |
张梅,陈万利,许桃. 基于LS-SVM的矿井提升机故障预测. 电子测量技术. 2021(12): 70-74 .
![]() | |
6. |
田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
![]() | |
7. |
李臻,贾洪钢. 嵌入式煤机设备状态监测装置设计. 煤矿机电. 2021(04): 11-13+17 .
![]() | |
8. |
何俊峰. 矿井提升机闸瓦间隙模糊控制系统研究. 自动化仪表. 2020(01): 61-64 .
![]() | |
9. |
张雅楠,李飞,卞学平,韩志鑫,王璇,於思彤. 基于互联网的提升设备工况监测与智能诊断系统. 科技风. 2020(08): 117-118 .
![]() | |
10. |
高许,邓世建,蔡雨盛. 基于PyQt的矿井提升机温度监测系统设计. 煤矿机电. 2020(02): 8-11 .
![]() | |
11. |
阎东慧. 矿井提升机自适应无线通信系统设计. 工矿自动化. 2020(05): 99-103 .
![]() | |
12. |
丁恩杰,俞啸,廖玉波,吴传龙,陈伟,郁万里,王威. 基于物联网的矿山机械设备状态智能感知与诊断. 煤炭学报. 2020(06): 2308-2319 .
![]() | |
13. |
宋绪国,高国庆,苏丛,夏昊天. 蓄水电站水污染环境下职工健康状况监测系统设计. 粘接. 2020(07): 54-58 .
![]() | |
14. |
吴杰. 基于物联网的矿井提升机监测与故障诊断系统. 信息与电脑(理论版). 2020(12): 163-165 .
![]() | |
15. |
田劼,胡耀松,郭红飞,赵彩跃. 基于霍尔元件的矿用钢丝绳探伤仪研究. 工矿自动化. 2019(11): 75-80 .
![]() |