WANG Hongwei, QIE Chenfei, FU Xiang, et al. Intelligent decision-making model of multi-behavior collaborative control in coal mine excavation[J]. Journal of Mine Automation,2023,49(6):120-127. DOI: 10.13272/j.issn.1671-251x.18114
Citation: WANG Hongwei, QIE Chenfei, FU Xiang, et al. Intelligent decision-making model of multi-behavior collaborative control in coal mine excavation[J]. Journal of Mine Automation,2023,49(6):120-127. DOI: 10.13272/j.issn.1671-251x.18114

Intelligent decision-making model of multi-behavior collaborative control in coal mine excavation

More Information
  • Received Date: May 07, 2023
  • Revised Date: June 14, 2023
  • Available Online: July 09, 2023
  • Intelligent decision-making support for multi-behavior collaborative control in coal mine excavation is one of the core functions of the coal mine excavation working face. The optimal time series planning of multi-behavior collaborative control in excavation is the key to intelligent decision-making. In order to solve the problems of single control mode, solidification and poor collaborative operation capability of multi-behavior in coal mine excavation, an intelligent decision-making model of multi-behavior collaborative control in coal mine excavation is designed. It realizes the collaborative operation of multi-behavior in the optimal time series. Firstly, an intelligent decision-making method for excavation multi-behavior collaborative control is proposed. The feasible time series planning set and multi-objective optimal time series planning strategy for excavation multi-behavior are determined. Secondly, based on the regulations and process requirements of the excavation site, a set of excavation action events is determined. By analyzing the time relationship between two action events in the event set, a constraint matrix for the time relationship of excavation multi-behaviors is obtained. Thirdly, based on the transformation method of the time relationship constraint matrix, the multi-behavior time relationship constraint matrix of excavation is transformed into a time relationship constraint matrix. The feasible time series planning set of excavation multi-behavior is obtained. Finally, the solving functions for different excavation objectives are defined and the optimal time series for different excavation objectives is obtained. The experimental results show that the excavation robot can work collaboratively without interference according to the optimal time series planning results of the excavation action determined by the model under different excavation objects. The execution time of one working cycle of the excavation operation is basically consistent with the time calculated by the decision-making model.
  • [1]
    康红普,姜鹏飞,刘畅. 煤巷智能快速掘进技术与装备的发展方向[J]. 采矿与岩层控制工程学报,2023,5(2):5-7.

    KANG Hongpu,JIANG Pengfei,LIU Chang. Development of intelligent rapid excavation technology and equipment for coal mine roadways[J]. Journal of Mining and Strata Control Engineering,2023,5(2):5-7.
    [2]
    王国法. 加快煤矿智能化建设 推进煤炭行业高质量发展[J]. 中国煤炭,2021,47(1):2-10. DOI: 10.3969/j.issn.1006-530X.2021.01.002

    WANG Guofa. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry[J]. China Coal,2021,47(1):2-10. DOI: 10.3969/j.issn.1006-530X.2021.01.002
    [3]
    王步康. 煤矿巷道掘进技术与装备的现状及趋势分析[J]. 煤炭科学技术,2020,48(11):1-11. DOI: 10.13199/j.cnki.cst.2020.11.001

    WANG Bukang. Current status and trend analysis of readway driving technology and equipment in coal mine[J]. Coal Science and Technology,2020,48(11):1-11. DOI: 10.13199/j.cnki.cst.2020.11.001
    [4]
    范京道,魏东,汪青仓,等. 智能化建井理论技术研究与工程实践[J]. 煤炭学报,2023,48(1):470-483.

    FAN Jingdao,WEI Dong,WANG Qingcang,et al. Theory and practice of intelligent coal mine shaft excavation[J]. Journal of China Coal Society,2023,48(1):470-483.
    [5]
    郝建生. 煤矿巷道掘进装备关键技术现状和展望[J]. 煤炭科学技术,2014,42(8):69-74. DOI: 10.13199/j.cnki.cst.2014.08.018

    HAO Jiansheng. Present status and outlook of key technology for mine roadway heading equipment[J]. Coal Science and Technology,2014,42(8):69-74. DOI: 10.13199/j.cnki.cst.2014.08.018
    [6]
    杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.

    YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
    [7]
    马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.

    MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.
    [8]
    吴淼,李瑞,王鹏江,等. 基于数字孪生的综掘巷道并行工艺技术初步研究[J]. 煤炭学报,2020,45(增刊1):506-513. DOI: 10.13225/j.cnki.jccs.2019.1453

    WU Miao,LI Rui,WANG Pengjiang,et al. Preliminary study on the parallel technology of fully mechanized roadway based on digital twin[J]. Journal of China Coal Society,2020,45(S1):506-513. DOI: 10.13225/j.cnki.jccs.2019.1453
    [9]
    付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339

    FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339
    [10]
    马宏伟,王世斌,毛清华,等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报,2021,46(1):310-320. DOI: 10.13225/j.cnki.jccs.yg20.1904

    MA Hongwei,WANG Shibin,MAO Qinghua,et al. Key common technology of intelligent heading in coal mine roadway[J]. Journal of China Coal Society,2021,46(1):310-320. DOI: 10.13225/j.cnki.jccs.yg20.1904
    [11]
    马宏伟,王鹏,王世斌,等. 煤矿掘进机器人系统智能并行协同控制方法[J]. 煤炭学报,2021,46(7):2057-2067. DOI: 10.13225/j.cnki.jccs.JJ21.0820

    MA Hongwei,WANG Peng,WANG Shibin,et al. Intelligent parallel cooperative control method of coal mine excavation robot system[J]. Journal of China Coal Society,2021,46(7):2057-2067. DOI: 10.13225/j.cnki.jccs.JJ21.0820
    [12]
    史忠植,张子云. 基于主体的智能协同决策支持系统[J]. 智能系统学报,2008,3(5):377-383.

    SHI Zhongzhi,ZHANG Ziyun. Agent-based intelligent collaborative decision support system[J]. CAAI Transactions on Intelligent Systems,2008,3(5):377-383.
    [13]
    呼守信. 高效快速掘进系统的协同控制[J]. 工矿自动化,2017,43(4):86-88.

    HU Shouxin. Cooperative control of high-efficient and rapid excavation system[J]. Industry and Mine Automation,2017,43(4):86-88.
    [14]
    COTSAKIS R, ST-ONGE D, BELTRAME G. Decentralized collaborative transport of fabrics using micro-UAVs[C]. International Conference on Robotics and Automation, Montreal, 2018. DOI: 10.1109/ICRA.2019.8793778.
    [15]
    TAHIR N, PARASURAMAN R. Mobile robot control and autonomy through collaborative simulation twin[EB/OL]. [2023-04-10]. https://arxiv.org/abs/2303.06172.
    [16]
    蒋建国,苏兆品,齐美彬,等. 基于强化学习的多任务联盟并行形成策略[J]. 自动化学报,2008,34(3):349-352. DOI: 10.3724/SP.J.1004.2008.00349

    JIANG Jianguo,SU Zhaopin,QI Meibin,et al. Multi-task coalition parallel formation strategy based on reinforcement learning[J]. Acta Automatica Sinica,2008,34(3):349-352. DOI: 10.3724/SP.J.1004.2008.00349
    [17]
    石鹏. 综掘成套装备协同控制研究[D]. 阜新: 辽宁工程技术大学, 2020.

    SHI Peng. Research on cooperative control of comprehensive digging equipment[D]. Fuxin: Liaoning Technical University, 2020.
    [18]
    程韬波,李晓晓,徐智浩,等. 基于递归神经网络的多机器人智能协同控制[J]. 机电工程技术,2020,49(5):1-4. DOI: 10.3969/j.issn.1009-9492.2020.05.001

    CHENG Taobo,LI Xiaoxiao,XU Zhihao,et al. Intelligent cooperative control of multiple manipulators based on recurrent neural network[J]. Mechanical & Electrical Engineering Technology,2020,49(5):1-4. DOI: 10.3969/j.issn.1009-9492.2020.05.001
    [19]
    张兴国,张柏,唐玉芝,等. 多机器人系统协同作业策略研究及仿真实现[J]. 机床与液压,2017,45(17):44-51. DOI: 10.3969/j.issn.1001-3881.2017.17.011

    ZHANG Xingguo,ZHANG Bai,TANG Yuzhi,et al. Research of the cooperative work strategy in multi-robot system and simulation implement[J]. Machine Tool & Hydraulics,2017,45(17):44-51. DOI: 10.3969/j.issn.1001-3881.2017.17.011
    [20]
    王国庆,许红盛,王恺睿. 煤矿机器人研究现状与发展趋势[J]. 煤炭科学技术,2014,42(2):73-77.

    WANG Guoqing,XU Hongsheng,WANG Kairui. Research status and development trend of coal mining robots[J]. Coal Science and Technology,2014,42(2):73-77.
    [21]
    武星,赵龙,武靖洋,等. 基于改进leader-follower策略的AGV多驱动单元协同控制[J]. 机械设计与制造工程,2018,47(2):35-39. DOI: 10.3969/j.issn.2095-509X.2018.02.008

    WU Xing,ZHAO Long,WU Jingyang,et al. Coordinated control of multiple driving units of an automated guided vehicle based on an improved leader-follower strategy[J]. Machine Design and Manufacturing Engineering,2018,47(2):35-39. DOI: 10.3969/j.issn.2095-509X.2018.02.008
    [22]
    朱雪燕. 矿用皮带机协同控制系统开发[D]. 芜湖: 安徽工程大学, 2018.

    ZHU Xueyan. Mine belt conveyor cooperative control system development[D]. Wuhu: Anhui Polytechnic University, 2018.
    [23]
    PIERPAOLI P, DOAN T T, ROMBERG J, et al. A reinforcement learning framework for sequencing multi-robot behaviors[EB/OL]. [2023-04-10]. https://arxiv.org/abs/1909.05731v2.
    [24]
    ZHU Minglei, HUANG Cong, QIU Zhiqiang, et al. Parallel image-based visual servoing/force control of a collaborative delta robot[J]. Frontiers in Neurorobotics, 2022, 16. DOI: 10.3389/fnbot.2022.922704.
    [25]
    HUANG Zichao,CHU Duanfeng,WU Chaozhong,et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(3):959-974.
    [26]
    李波,刘宾,高明,等. 考虑任务协作的煤矿掘进配套多设备协同控制方法[J]. 机械与电子,2022,40(10):67-71.

    LI Bo,LIU Bin,GAO Ming,et al. Coal mine excavation supporting multi-equipment cooperative control method considering task cooperation[J]. Machinery & Electronics,2022,40(10):67-71.
    [27]
    王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083.

    WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083.
    [28]
    毛君,董钰峰,卢进南,等. 巷道掘进截割钻进先进技术研究现状及展望[J]. 煤炭学报,2021,46(7):2084-2099. DOI: 10.13225/j.cnki.jccs.JJ21.0887

    MAO Jun,DONG Yufeng,LU Jinnan,et al. Research status and prospect of advanced technology of roadway excavation cutting and drilling equipment[J]. Journal of China Coal Society,2021,46(7):2084-2099. DOI: 10.13225/j.cnki.jccs.JJ21.0887
    [29]
    王虹,王建利,张小峰. 掘锚一体化高效掘进理论与技术[J]. 煤炭学报,2020,45(6):2021-2030.

    WANG Hong,WANG Jianli,ZHANG Xiaofeng. Theory and technology of efficient roadway advance with driving and bolting integration[J]. Journal of China Coal Society,2020,45(6):2021-2030.
    [30]
    杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005. DOI: 10.13225/j.cnki.jccs.2019.1452
  • Related Articles

    [1]WU Wenqian, ZHEN Weiqi, MEN Shaobin, ZHAO Longlong. Decision model of shearer drum intelligent height adjustment based on rough set-RBF neural network[J]. Journal of Mine Automation, 2024, 50(S2): 167-172.
    [2]CHENG Jian, SHI Linsong, LUO Yi, ZHOU Tianbai, YANG Lingkai. Real time identification of microseismic events based on ridge regression improved normative variable analysis[J]. Journal of Mine Automation, 2024, 50(3): 92-98. DOI: 10.13272/j.issn.1671-251x.18170
    [3]LI Shanhua, XIAO Tao, LI Xiaoli, YANG Fazhan, YAO Yong, ZHAO Peipei. Miner action recognition model based on DRCA-GCN[J]. Journal of Mine Automation, 2023, 49(4): 99-105, 112. DOI: 10.13272/j.issn.1671-251x.2022120023
    [4]XIANG Xueyi, LEI Zhipeng, LI Linbo, REN Ruibin, LI Jie, WANG Feiyu. Action recognition method for mine kilometer directional drilling rig[J]. Journal of Mine Automation, 2022, 48(9): 140-147, 156. DOI: 10.13272/j.issn.1671-251x.2022030103
    [5]DANG Weichao, YAO Yuan, BAI Shangwang, GAO Gaimei, WU Zhefeng. Research on unloading drill-rod action identification in coal mine water exploratio[J]. Journal of Mine Automation, 2020, 46(7): 107-112. DOI: 10.13272/j.issn.1671-251x.2019070074
    [6]HU Shouxi. Cooperative control of high-efficient and rapid excavation system[J]. Journal of Mine Automation, 2017, 43(4): 86-88. DOI: 10.13272/j.issn.1671-251x.2017.04.020
    [7]WANG Liang. Detection and early warning of coal mine underground safety event based on event drive[J]. Journal of Mine Automation, 2016, 42(8): 33-37. DOI: 10.13272/j.issn.1671-251x.2016.08.009
    [8]LIU Guo-peng, JIA You-sheng, ZHANG Bo, WU Peng. Application of CANopen Protocol in Electrical Control System of Coal Mine Excavating Equipment[J]. Journal of Mine Automation, 2011, 37(9): 10-13.
    [9]YU Yue-sen, QIAN Zhen-hua, PENG Li-ming, LIU Jia. Setting Method of Baud Rate of CAN Bus and Its Error Analysis[J]. Journal of Mine Automation, 2009, 35(6): 52-55.
    [10]ZHANG Lin. Network Linking System with PLC of Series SYSMAC[J]. Journal of Mine Automation, 2000, 26(5): 31-32.
  • Cited by

    Periodical cited type(15)

    1. 余彦,蔡霖,张冲,冀弘帅. 基于密度聚类的复杂装备健康监测方法. 指挥控制与仿真. 2024(02): 69-77 .
    2. 田劼,田壮,郭红飞,刘凝哲,马建武. 矿用钢丝绳损伤检测磁通回路优化设计. 工矿自动化. 2022(03): 118-122 . 本站查看
    3. 祁东明. 海洋石油平台注水泵在线监测与故障智能诊断技术应用. 石油工业技术监督. 2021(03): 9-13 .
    4. 钱柄旭,贾清华,付志明,宋狄,徐桂云. 矿井提升机刚性罐道滚轮充发电装置. 煤矿机械. 2021(04): 115-117 .
    5. 张梅,陈万利,许桃. 基于LS-SVM的矿井提升机故障预测. 电子测量技术. 2021(12): 70-74 .
    6. 田劼,王洋洋,郭红飞,赵彩跃. 基于漏磁检测的钢丝绳探伤原理与方法研究. 煤炭工程. 2021(09): 95-100 .
    7. 李臻,贾洪钢. 嵌入式煤机设备状态监测装置设计. 煤矿机电. 2021(04): 11-13+17 .
    8. 何俊峰. 矿井提升机闸瓦间隙模糊控制系统研究. 自动化仪表. 2020(01): 61-64 .
    9. 张雅楠,李飞,卞学平,韩志鑫,王璇,於思彤. 基于互联网的提升设备工况监测与智能诊断系统. 科技风. 2020(08): 117-118 .
    10. 高许,邓世建,蔡雨盛. 基于PyQt的矿井提升机温度监测系统设计. 煤矿机电. 2020(02): 8-11 .
    11. 阎东慧. 矿井提升机自适应无线通信系统设计. 工矿自动化. 2020(05): 99-103 . 本站查看
    12. 丁恩杰,俞啸,廖玉波,吴传龙,陈伟,郁万里,王威. 基于物联网的矿山机械设备状态智能感知与诊断. 煤炭学报. 2020(06): 2308-2319 .
    13. 宋绪国,高国庆,苏丛,夏昊天. 蓄水电站水污染环境下职工健康状况监测系统设计. 粘接. 2020(07): 54-58 .
    14. 吴杰. 基于物联网的矿井提升机监测与故障诊断系统. 信息与电脑(理论版). 2020(12): 163-165 .
    15. 田劼,胡耀松,郭红飞,赵彩跃. 基于霍尔元件的矿用钢丝绳探伤仪研究. 工矿自动化. 2019(11): 75-80 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1744) PDF downloads (54) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return