Citation: | LI Shanhua, XIAO Tao, LI Xiaoli, et al. Miner action recognition model based on DRCA-GCN[J]. Journal of Mine Automation,2023,49(4):99-105, 112. doi: 10.13272/j.issn.1671-251x.2022120023 |
[1] |
许鹏飞. 2000—2021年我国煤矿事故特征及发生规律研究[J]. 煤炭工程,2022,54(7):129-133.
XU Pengfei. Characteristics and occurrence regularity of coal mine accidents in China from 2020 to 2021[J]. Coal Engineering,2022,54(7):129-133.
|
[2] |
刘林,吴金南,常志朋. 安全违规行为的人际传染效应研究[J]. 中国安全科学学报,2021,31(8):22-29. doi: 10.16265/j.cnki.issn1003-3033.2021.08.004
LIU Lin,WU Jinnan,CHANG Zhipeng. Study on interpersonal contagion effect of safety violation behaviors[J]. China Safety Science Journal,2021,31(8):22-29. doi: 10.16265/j.cnki.issn1003-3033.2021.08.004
|
[3] |
陈红. 中国煤矿重大事故中的不安全行为研究[M]. 北京: 科学出版社, 2006.
CHEN Hong. A study on unsafe behavior of major coal mine accidents in China[M]. Beijing: Science Press, 2006.
|
[4] |
常悦. 基于煤矿人因事故影响因素的安全防范体系研究[D]. 太原: 太原理工大学, 2012.
CHANG Yue. Research on security system based on the influence factors to human accident of coal mine[D]. Taiyuan: Taiyuan University of Technology, 2012.
|
[5] |
刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159-1169. doi: 10.13225/j.cnki.jccs.2021.0670
LIU Hao,LIU Haibin,SUN Yu,et al. Research on intelligent recognition system of unsafe behavior of coal mine underground employee[J]. Journal of China Coal Society,2021,46(S2):1159-1169. doi: 10.13225/j.cnki.jccs.2021.0670
|
[6] |
张力,魏振宽. 煤矿事故的人因失误原因及控制[J]. 中国煤炭,2004,33(7):52-53. doi: 10.3969/j.issn.1006-530X.2004.07.027
ZHANG Li,WEI Zhenkuan. Accident caused by human error in coal mine:reason and prevention[J]. China Coal,2004,33(7):52-53. doi: 10.3969/j.issn.1006-530X.2004.07.027
|
[7] |
CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 7291-7299.
|
[8] |
YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. AAAI Conference on Artificial Intelligence, 2018: 7444-7452.
|
[9] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 12026-12035.
|
[10] |
饶天荣,潘涛,徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化,2022,48(10):48-54. doi: 10.13272/j.issn.1671-251x.17949
RAO Tianrong,PAN Tao,XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation,2022,48(10):48-54. doi: 10.13272/j.issn.1671-251x.17949
|
[11] |
HUANG Zhen, SHEN Xu, TIAN Xinmei, et al. Spatio-temporal inception graph convolutional networks for skeleton-based action recognition[C]. The 28th ACM International Conference on Multimedia, 2020: 2122-2130.
|
[12] |
SHI Lei,ZHANG Yifan,CHENG Jian,et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing,2020,29:9532-9545. doi: 10.1109/TIP.2020.3028207
|
[13] |
黄辉,张雪. 煤矿员工不安全行为研究综述[J]. 煤炭工程,2018,50(6):123-127.
HUANG Hui,ZHANG Xue. Review of research on unsafe behavior of miners[J]. Coal Engineering,2018,50(6):123-127.
|
[14] |
温廷新,王贵通,孔祥博,等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报,2020,30(3):41-46. doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
WEN Tingxin,WANG Guitong,KONG Xiangbo,et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal,2020,30(3):41-46. doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
[15] |
HAMMOND D K,VANDERGHEYNST P,GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis,2011,30(2):129-150. doi: 10.1016/j.acha.2010.04.005
|
[16] |
LIU Jun,SHAHROUDY A,PEREZ M,et al. NTU RGB+D 120:a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(10):2684-2701. doi: 10.1109/TPAMI.2019.2916873
|
[17] |
LIU Jun, SHAHROUDY A, XU Dong, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]. European Conference on Computer Vision, 2016: 816-833.
|
[18] |
CAETANO C, SENA J, BREMOND F, et al. Skelemotion: a new representation of skeleton joint sequences based on motion information for 3D action recognition[C]. 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, 2019: 1-8.
|
[19] |
SONG Yifan, ZHANG Zhang, WANG Liang. Richly activated graph convolutional network for action recognition with incomplete skeletons[C]. IEEE International Conference on Image Processing, Taipei, 2019: 1-5.
|
[20] |
LI Maosen, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 3595-3603.
|
[21] |
PAPADOPOULOS K, GHORBEL E, AOUADA D, et al. Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition[EB/OL]. [2022-11-10]. https://arxiv.org/abs/1912.09745.
|