Citation: | WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156. doi: 10.13272/j.issn.1671-251x.2022100022 |
[1] |
蒋卫良,韩东劲. 我国煤矿带式输送机现状与发展趋势[J]. 煤矿机电,2008,39(1):1-6.
JIANG Weiliang,HAN Dongjin. Development situation and tendency of native mining belt conveyor[J]. Colliery Mechanical & Electrical Technology,2008,39(1):1-6.
|
[2] |
杨孝新,刘婷婷,刘福明,等. 露天煤矿带式输送机智能巡检机器人[J]. 露天采矿技术,2022,37(4):48-51.
YANG Xiaoxin,LIU Tingting,LIU Fuming,et al. Intelligent inspection robots for belt conveyors in open-pit coal mines[J]. Opencast Mining Technology,2022,37(4):48-51.
|
[3] |
周立辉,张永生,孙勇,等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化,2011,35(19):85-88,96.
ZHOU Lihui,ZHANG Yongsheng,SUN Yong,et al. Development and application of equipment inspection root for smart substations[J]. Automation of Electric Power Systems,2011,35(19):85-88,96.
|
[4] |
裴文良,张树生,李军伟. 矿用巡检机器人设计及其应用[J]. 制造业自动化,2017,39(2):73-74,94.
PEI Wenliang,ZHANG Shusheng,LI Junwei. The design and application of inspection robot for mine[J]. Manufacturing Automation,2017,39(2):73-74,94.
|
[5] |
朱剑锋. 煤矿带式输送机输送带撕裂红外检测系统设计[J]. 新型工业化,2017,7(7):58-61.
ZHU Jianfeng. Design conveyor belt tear infrared detection system of coal mine ribbon conveyer[J]. The Journal of New Industrialization,2017,7(7):58-61.
|
[6] |
韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012,508(6):57-59.
HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012,508(6):57-59.
|
[7] |
孙维,刁冬梅. 基于φ−OTDR技术的带式输送机托辊故障检测[J]. 工矿自动化,2016,42(8):9-12.
SUN Wei,DIAO Dongmei. Roller fault detection of belt conveyor based on φ-OTDR technology[J]. Industry and Mine Automation,2016,42(8):9-12.
|
[8] |
曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86.
CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86.
|
[9] |
郝洪涛,苏耀瑞,丁文捷,等.托辊非接触式故障识别方法研究[J/OL].机械科学与技术:1-8[2022-08-25]. DOI: 10.13433/j.cnki.1003-8728.20220008.
HAO Hongtao,SU Yaorui,DING Wenjie,et al.Study on the method of non-contact fault identification of rollers[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-8[2022-08-25]. DOI:10.13433/j.cnki.1003-8728.20220008.
|
[10] |
伊鑫,杨明锦,杨林顺,等. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J]. 选煤技术,2020(5):94-102.
YI Xin,YANG Mingjin,YANG Linshun,et al. The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor's idlers[J]. Coal Preparation Technology,2020(5):94-102.
|
[11] |
蔡安江,李涛,王洪波,等. 带式输送机故障准确诊断方法[J]. 金属矿山,2020,48(4):130-134.
CAI Anjiang,LI Tao,WANG Hongbo,et al. Accurate diagnosis method for belt conveyor fault[J]. Metal Mine,2020,48(4):130-134.
|
[12] |
葛江华,刘奇,王亚萍,等. 支持张量机与KNN−AMDM决策融合的齿轮箱故障诊断方法[J]. 振动工程学报,2018,31(6):1093-1101.
GE Jianghua,LIU Qi,WANG Yaping,et al. Fault diagnosis method of gearbox supporting tension machine and KNN-AMDM decision fusion[J]. Journal of Vibration Engineering,2018,31(6):1093-1101.
|
[13] |
ZHAO Ruimei, CUI Huimin. Improved threshold denoising method based on wavelet transform[C]. 7th International Conference on Modelling, Identification and Control (ICMIC), Sousse, 2015: 1354-1359.
|
[14] |
蔡铁,朱杰. 小波阈值降噪算法中最优分解层数的自适应选择[J]. 控制与决策,2006,21(2):217-220.
CAI Tie,ZHU Jie. Adaptive selection of optimal decomposition level in threshold de-noising algorithm based on wavelet[J]. Control and Decision,2006,21(2):217-220.
|
[15] |
王维,张英堂,任国全. 小波阈值降噪算法中最优分解层数的自适应确定及仿真[J]. 仪器仪表学报,2009,30(3):526-530.
WANG Wei,ZHANG Yingtang,REN Guoquan. Adaptive selection and simulation of optimal decomposition level in threshold de-noising algorithm based on wavelet transform[J]. Chinese Journal of Scientific Instrument,2009,30(3):526-530.
|
[16] |
李虹,徐小力,吴国新,等. 基于MFCC的语音情感特征提取研究[J]. 电子测量与仪器学报,2017,31(3):448-453.
LI Hong,XU Xiaoli,WU Guoxin,et al. Research on speech emotion feature extraction based on MFCC[J]. Journal of Electronic Measurement and Instrumentation,2017,31(3):448-453.
|
[17] |
吕霄云. 基于MFCC和GMM的异常声音识别算法研究[D]. 成都: 西南交通大学, 2010.
LYU Xiaoyun. Research on abnormal audio recognition algorithm based on MFCC and GMM[D]. Chengdu: Southwest Jiaotong University, 2010.
|
[18] |
曲建岭,余路,袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报,2018,39(7):134-143. doi: 10.19650/j.cnki.cjsi.J1803286
QU Jianling,YU Lu,YUAN Tao,et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument,2018,39(7):134-143. doi: 10.19650/j.cnki.cjsi.J1803286
|
[19] |
吴春志,江鹏程,冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击,2018,37(22):51-56.
WU Chunzhi,JIANG Pengcheng,FENG Fuzhou,et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock,2018,37(22):51-56.
|
[20] |
叶壮,余建波. 基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J]. 振动与冲击,2020,39(20):55-66.
YE Zhuang,YU Jianbo. Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2020,39(20):55-66.
|
[21] |
黄华,姚嘉靖,王永和,等. 基于多通道一维卷积神经网络的刀具磨损动态预测模型[J]. 振动与冲击,2023,42(2):60-67.
HUANG Hua,YAO Jiajing,WANG Yonghe,et al. Dynamic prediction model for tool wear based on a multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2023,42(2):60-67.
|