WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156. DOI: 10.13272/j.issn.1671-251x.2022100022
Citation: WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156. DOI: 10.13272/j.issn.1671-251x.2022100022

Fault detection method for belt conveyor idler

More Information
  • Received Date: October 10, 2022
  • Revised Date: February 07, 2023
  • Available Online: February 26, 2023
  • The existing fault detection methods for belt conveyor idler have the problems of low recognition precision, poor anti-interference capability and inability to operate stably over a long period of time. In order to solve the above problems, a fault detection method for belt conveyor idler based on time-frequency-MFCC(TFM) and multi-input one-dimensional convolutional neural network (MI-1DCNN) is proposed. Firstly, the pickup collects the audio signal of the coal conveyor idler running along the line. The dB 4 wavelet unbiased risk estimation threshold noise reduction method is used to preprocess the signal to eliminate the background noise and improve the signal-to-noise ratio. Secondly, the time domain, frequency domain and Mel frequency cepstrum coefficient (MFCC), and the first and second order difference coefficient of the noise reduction audio signal are normalized respectively, and finally assembled to obtain the feature TFM. Finally, that TFM signals are input into a MI-1DCNN model with a multi-scale convolution kernel. The feature fusion is carried out at the end of a network channel. The classification and identification of the normal idler and the fault idler are completed through a Softmax function. The TFM-MI-1DCNN model is tested with the audio signal samples of coal conveyor idler collected in a coal mine. The results show that the average recognition accuracy of the fault idler is 98.65%. The average recognition accuracy is improved by 1.50% and 1.03% compared to the improved wavelet threshold denoising-backpropagation-radial basis function network and MFCC-K-nearest neighbor algorithm-support vector machine. The false detection rate is only 0.194%. The results of field application show that the average dentification accuracy of the proposed method is 98.4%, indicating that the proposed method is suitable for field application.
  • [1]
    蒋卫良,韩东劲. 我国煤矿带式输送机现状与发展趋势[J]. 煤矿机电,2008,39(1):1-6.

    JIANG Weiliang,HAN Dongjin. Development situation and tendency of native mining belt conveyor[J]. Colliery Mechanical & Electrical Technology,2008,39(1):1-6.
    [2]
    杨孝新,刘婷婷,刘福明,等. 露天煤矿带式输送机智能巡检机器人[J]. 露天采矿技术,2022,37(4):48-51.

    YANG Xiaoxin,LIU Tingting,LIU Fuming,et al. Intelligent inspection robots for belt conveyors in open-pit coal mines[J]. Opencast Mining Technology,2022,37(4):48-51.
    [3]
    周立辉,张永生,孙勇,等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化,2011,35(19):85-88,96.

    ZHOU Lihui,ZHANG Yongsheng,SUN Yong,et al. Development and application of equipment inspection root for smart substations[J]. Automation of Electric Power Systems,2011,35(19):85-88,96.
    [4]
    裴文良,张树生,李军伟. 矿用巡检机器人设计及其应用[J]. 制造业自动化,2017,39(2):73-74,94.

    PEI Wenliang,ZHANG Shusheng,LI Junwei. The design and application of inspection robot for mine[J]. Manufacturing Automation,2017,39(2):73-74,94.
    [5]
    朱剑锋. 煤矿带式输送机输送带撕裂红外检测系统设计[J]. 新型工业化,2017,7(7):58-61.

    ZHU Jianfeng. Design conveyor belt tear infrared detection system of coal mine ribbon conveyer[J]. The Journal of New Industrialization,2017,7(7):58-61.
    [6]
    韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012,508(6):57-59.

    HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012,508(6):57-59.
    [7]
    孙维,刁冬梅. 基于φ−OTDR技术的带式输送机托辊故障检测[J]. 工矿自动化,2016,42(8):9-12.

    SUN Wei,DIAO Dongmei. Roller fault detection of belt conveyor based on φ-OTDR technology[J]. Industry and Mine Automation,2016,42(8):9-12.
    [8]
    曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86.

    CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86.
    [9]
    郝洪涛,苏耀瑞,丁文捷,等.托辊非接触式故障识别方法研究[J/OL].机械科学与技术:1-8[2022-08-25]. DOI: 10.13433/j.cnki.1003-8728.20220008.

    HAO Hongtao,SU Yaorui,DING Wenjie,et al.Study on the method of non-contact fault identification of rollers[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-8[2022-08-25]. DOI:10.13433/j.cnki.1003-8728.20220008.
    [10]
    伊鑫,杨明锦,杨林顺,等. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J]. 选煤技术,2020(5):94-102.

    YI Xin,YANG Mingjin,YANG Linshun,et al. The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor's idlers[J]. Coal Preparation Technology,2020(5):94-102.
    [11]
    蔡安江,李涛,王洪波,等. 带式输送机故障准确诊断方法[J]. 金属矿山,2020,48(4):130-134.

    CAI Anjiang,LI Tao,WANG Hongbo,et al. Accurate diagnosis method for belt conveyor fault[J]. Metal Mine,2020,48(4):130-134.
    [12]
    葛江华,刘奇,王亚萍,等. 支持张量机与KNN−AMDM决策融合的齿轮箱故障诊断方法[J]. 振动工程学报,2018,31(6):1093-1101.

    GE Jianghua,LIU Qi,WANG Yaping,et al. Fault diagnosis method of gearbox supporting tension machine and KNN-AMDM decision fusion[J]. Journal of Vibration Engineering,2018,31(6):1093-1101.
    [13]
    ZHAO Ruimei, CUI Huimin. Improved threshold denoising method based on wavelet transform[C]. 7th International Conference on Modelling, Identification and Control (ICMIC), Sousse, 2015: 1354-1359.
    [14]
    蔡铁,朱杰. 小波阈值降噪算法中最优分解层数的自适应选择[J]. 控制与决策,2006,21(2):217-220.

    CAI Tie,ZHU Jie. Adaptive selection of optimal decomposition level in threshold de-noising algorithm based on wavelet[J]. Control and Decision,2006,21(2):217-220.
    [15]
    王维,张英堂,任国全. 小波阈值降噪算法中最优分解层数的自适应确定及仿真[J]. 仪器仪表学报,2009,30(3):526-530.

    WANG Wei,ZHANG Yingtang,REN Guoquan. Adaptive selection and simulation of optimal decomposition level in threshold de-noising algorithm based on wavelet transform[J]. Chinese Journal of Scientific Instrument,2009,30(3):526-530.
    [16]
    李虹,徐小力,吴国新,等. 基于MFCC的语音情感特征提取研究[J]. 电子测量与仪器学报,2017,31(3):448-453.

    LI Hong,XU Xiaoli,WU Guoxin,et al. Research on speech emotion feature extraction based on MFCC[J]. Journal of Electronic Measurement and Instrumentation,2017,31(3):448-453.
    [17]
    吕霄云. 基于MFCC和GMM的异常声音识别算法研究[D]. 成都: 西南交通大学, 2010.

    LYU Xiaoyun. Research on abnormal audio recognition algorithm based on MFCC and GMM[D]. Chengdu: Southwest Jiaotong University, 2010.
    [18]
    曲建岭,余路,袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报,2018,39(7):134-143. DOI: 10.19650/j.cnki.cjsi.J1803286

    QU Jianling,YU Lu,YUAN Tao,et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument,2018,39(7):134-143. DOI: 10.19650/j.cnki.cjsi.J1803286
    [19]
    吴春志,江鹏程,冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击,2018,37(22):51-56.

    WU Chunzhi,JIANG Pengcheng,FENG Fuzhou,et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock,2018,37(22):51-56.
    [20]
    叶壮,余建波. 基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J]. 振动与冲击,2020,39(20):55-66.

    YE Zhuang,YU Jianbo. Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2020,39(20):55-66.
    [21]
    黄华,姚嘉靖,王永和,等. 基于多通道一维卷积神经网络的刀具磨损动态预测模型[J]. 振动与冲击,2023,42(2):60-67.

    HUANG Hua,YAO Jiajing,WANG Yonghe,et al. Dynamic prediction model for tool wear based on a multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2023,42(2):60-67.
  • Related Articles

    [1]SHEN Long, SHAN Haoran, PEI Wenliang, YANG Guixiang, WANG Yongli. Abnormal sound detection method for coal mine belt conveyors based on convolutional autoencoder[J]. Journal of Mine Automation, 2025, 51(2): 100-105. DOI: 10.13272/j.issn.1671-251x.2023090025
    [2]QIU Ji'er, WANG Qi, WANG Peng. Fault diagnosis method for underground coal mining equipment audio signals based on improved transfer learning[J]. Journal of Mine Automation, 2025, 51(2): 91-99. DOI: 10.13272/j.issn.1671-251x.2025010027
    [3]LI Yingna, CUI Yanping, AN Boshuo, LIU Baijian, JIN Jianwei. Research on the roadheader cutting control system based on convolutional neural network and fuzzy PID[J]. Journal of Mine Automation, 2025, 51(1): 61-70, 137. DOI: 10.13272/j.issn.1671-251x.2024070084
    [4]HAN Zhongli. Mining safety helmet wearing detection based on convolutional neural network[J]. Journal of Mine Automation, 2024, 50(S1): 82-87.
    [5]SHI Zhiyuan, TENG Hu, MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 56-62. DOI: 10.13272/j.issn.1671-251x.2022060011
    [6]DU Fei, MA Tianbing, HU Weikang, LYU Yinghui, PENG Meng. Fault diagnosis of rigid guide based on wavelet transform and improved convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 42-48, 62. DOI: 10.13272/j.issn.1671-251x.17964
    [7]YOU Lei, ZHU Xinglin, CHEN Yu, LUO Minghua. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation, 2022, 48(9): 16-24. DOI: 10.13272/j.issn.1671-251x.2022040087
    [8]LI Jingzhao, SUN Jiechen, YE Tongzhou. Prediction method of operation state of mine belt conveyor[J]. Journal of Mine Automation, 2022, 48(2): 107-113. DOI: 10.13272/j.issn.1671-251x.2021080074
    [9]DU Yun, ZHANG Lulu, PAN Tao. Miners' facial expression recognition method based on convolutional neural network[J]. Journal of Mine Automation, 2018, 44(5): 95-99. DOI: 10.13272/j.issn.1671-251x.17312
    [10]HE Ai-xiang, WANG Ping-jian, WEI Guang-fen, ZHANG Shou-xiang. Research of coal and gangue interface recognition based on Mel frequency cepstrum coefficient and genetic algorithm[J]. Journal of Mine Automation, 2013, 39(2): 66-71.
  • Cited by

    Periodical cited type(9)

    1. 孔华永,高静,柳跃,侯继洁. 基于St-DPMM的带式输送机托辊轴承声信号故障预警方法. 轴承. 2025(02): 102-110 .
    2. 邢震,田野新,包建军,齐智峰,周李兵,叶柏松,张蓉. 带式输送机托辊故障诊断及协同管控研究综述. 工矿自动化. 2025(03): 39-53 . 本站查看
    3. 李亚男,王春光,宗哲英,王帅,王祯,杜英杰. 基于声信号的机械设备故障检测研究现状及进展. 机床与液压. 2024(07): 183-191+200 .
    4. 张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
    5. 张赵管. 机器学习算法在音频信号降噪中的应用研究. 电声技术. 2024(11): 39-41 .
    6. 郭激光,张文锋,常树峰,任金武. 煤矿胶带运输智能巡检机器人系统设计与研究. 能源与环保. 2024(12): 201-206 .
    7. 崔晓辉,马孝栋,刘名声,陈晓东,张汉青. 多维信息输煤栈桥综合监测平台的研究与应用. 控制与信息技术. 2024(06): 110-115 .
    8. 王善忠,杨绍雷,李深. 托辊耐久性设计及其应用研究. 中国机械. 2023(07): 52-55 .
    9. 王善忠. 皮带机运行中托辊作用力及变形特性研究. 中国设备工程. 2023(21): 114-116 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (298) PDF downloads (49) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return