LI Zhe, WANG Wenqing. Research on radiation performance and safety performance of X-ray source for mine transmission detection[J]. Journal of Mine Automation,2022,48(11):93-100. DOI: 10.13272/j.issn.1671-251x.17957
Citation: LI Zhe, WANG Wenqing. Research on radiation performance and safety performance of X-ray source for mine transmission detection[J]. Journal of Mine Automation,2022,48(11):93-100. DOI: 10.13272/j.issn.1671-251x.17957

Research on radiation performance and safety performance of X-ray source for mine transmission detection

More Information
  • Received Date: May 23, 2022
  • Revised Date: November 03, 2022
  • Available Online: November 20, 2022
  • The X-ray source is the core component equipment of X-ray transmission detection. The stability and reliability of the X-ray source determine the performance of X-ray transmission detection. In order to meet the performance requirements of X-ray transmission detection, the tube voltage of X-ray source should be selected between 100-160 kV, and the tube current should be controlled between 0.1-4 mA. In view of the problem that the flameproof shell made of Q235 steel plate can greatly reduce the radiation output intensity of X-ray source, the X-ray transparent window made of tempered glass is installed on the flameproof shell of mine X-ray source to increase the transmission rate of X-ray. Taking the maximum tube voltage of 160 kV and the maximum tube current of 4 mA of X-ray source applied in the field of coal mine gangue selection identification transmission detection as an example, the maximum radiation output power of the mine X-ray source is calculated to be about 50 mW through actual measurement. The result meets the requirements of GB/T 3836.22-2017 Explosive Atmospheres-Part 22: Protection of Equipment and Transmission System Using Optical Radiation which stipulates that the radiation power shall not exceed 150 mW. In order to reduce the risk of the working temperature rise of the mine X-ray source, it is proposed that the X-ray tube should be made of the ceramic shell with good thermal conductivity. The anode of the X-ray tube should be directly fixed to the metal shell to increase the heat dissipation effect. The X-ray transparent window should be used to reduce the thermal power generated by the anode current of the X-ray tube. This will ensure that the surface temperature of the flameproof shell of the mine X-ray source is less than the 150 ℃ limit specified in GB/T 3836.1-2021 Explosive Atmospheres-Part 1: Equipment-General Requirements. In order to avoid the radiation impact of mine X-ray source on the surrounding environment, it is proposed to install the X-ray tube in a lead chamber made of 3 mm thick stainless steel and 5 mm thick metallic lead. This will shield the X-ray in non-working area, so as to ensure that the dose equivalent rate of X-ray leakage in the non-working area of the mine X-ray source is less than 2.5 µSv/h limit specified in GBZ 125-2009 Radiological Protection Requirements for Gauges Containing Sealed Radioactive Source.
  • [1]
    张燕超,徐桂云,崔吉. 基于X射线数字成像技术的钢丝绳检测系统[J]. 无损探伤,2007,31(1):23-24. DOI: 10.3969/j.issn.1671-4423.2007.01.005

    ZHANG Yanchao,XU Guiyun,CUI Ji. System used to detect steel wire rope based on X-ray digital imaging technology[J]. Nondestructive Testing Technology,2007,31(1):23-24. DOI: 10.3969/j.issn.1671-4423.2007.01.005
    [2]
    阮炜,郑明山. X射线检测钢丝绳成像系统设计[J]. 自动化技术与应用,2005(12):62-64. DOI: 10.3969/j.issn.1003-7241.2005.12.021

    RUAN Wei,ZHENG Mingshan. Fault detection system for steel wire rope[J]. Techniques of Automation and Applications,2005(12):62-64. DOI: 10.3969/j.issn.1003-7241.2005.12.021
    [3]
    马宏伟,毛清华,张旭辉. 矿用强力带式输送机智能监控技术研究进展[J]. 振动. 测试与诊断,2016,36(2):213-219,396.

    MA Hongwei,MAO Qinghua,ZHANG Xuhui. Intelligent monitoring technology study process for steel cord conveyor belt in coal mine[J]. Journal of Vibration,Measurement & Diagnosis,2016,36(2):213-219,396.
    [4]
    LI Xianguo, MIAO Changyun, WANG Ji, et al. Automatic defect detection method for the steel cord conveyor belt based on its X-ray images[C]. The 2nd Asia-Pacific Conference on Wearable Computing Systems, Changsha, 2011: 536-539.
    [5]
    崔广鑫,张宏伟. 基于X射线的钢丝绳芯输送带监测系统设计[J]. 工矿自动化,2012,38(4):70-72.

    CUI Guangxin,ZHANG Hongwei. Design of monitoring system of conveyor belt of steel rope core based on X-ray[J]. Industry and Mine Automation,2012,38(4):70-72.
    [6]
    于中山. 基于X射线图像处理的煤矸识别技术研究[D]. 淮南: 安徽理工大学, 2020.

    YU Zhongshan. Research on recognition technology of coal and gangue based on X-ray image processing[D]. Huainan: Anhui University of Science and Technology, 2020.
    [7]
    ROBBEN C,KORTE J,WOTRUBA H,et al. Experiences in dry coarse coal separation using X-ray-transmission-based sorting[J]. International Journal of Coal Preparation and Utilization,2014,34(3/4):210-219.
    [8]
    黄松,王敏,张静. X射线智能选矸技术在姚桥选煤厂的应用分析[J]. 山东煤炭科技,2020,38(8):186-188,197. DOI: 10.3969/j.issn.1005-2801.2020.08.060

    HUANG Song,WANG Min,ZHANG Jing. Application of X-ray intelligent gangue separation technology in Yaoqiao Coal Preparation Plant[J]. Shandong Coal Science and Technology,2020,38(8):186-188,197. DOI: 10.3969/j.issn.1005-2801.2020.08.060
    [9]
    田冰. X射线称重原理与实现方法[J]. 上海电气技术,2012,5(3):53-58. DOI: 10.3969/j.issn.1674-540X.2012.03.012

    TIAN Bing. Weighing principle and method of X-ray[J]. Journal of Shanghai Electric Technology,2012,5(3):53-58. DOI: 10.3969/j.issn.1674-540X.2012.03.012
    [10]
    任凤国,刘学红,任安祥,等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27. DOI: 10.13272/j.issn.1671-251x.2018010058

    REN Fengguo,LIU Xuehong,REN Anxiang,et al. Research on improving measurement stability of mine-used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27. DOI: 10.13272/j.issn.1671-251x.2018010058
    [11]
    张秀峰,李太友. X射线灰分仪在选煤厂的应用分析[J]. 选煤技术,2020,48(3):22-26. DOI: 10.16447/j.cnki.cpt.2020.03.006

    ZHANG Xiufeng,LI Taiyou. Application and analysis of the X-ray ash monitor in coal preparation plant[J]. Coal Preparation Technology,2020,48(3):22-26. DOI: 10.16447/j.cnki.cpt.2020.03.006
    [12]
    KETELHODT L,BERGMANN C. Dual energy X-ray transmission sorting of coal[J]. Journal of The Southern African Institute of Mining and Metallurgy,2010,110(7):371-378.
    [13]
    王鹏程. 放射物理与防护[M]. 2版. 北京: 人民卫生出版社, 2009.

    WANG Pengcheng. Radioactive physics and protection[M]. 2nd ed. Beijing: People's Medical Publishing House, 2009.
    [14]
    范建中,杨金文. 用X射线实验仪研究X射线的衰减规律[J]. 太原师范学院学报(自然科学版),2011,10(3):95-98.

    FAN Jianzhong,YANG Jinwen. Application X-ray experiment to physics experiment teaching in college[J]. Journal of Taiyuan Normal University(Natural Science Edition),2011,10(3):95-98.
    [15]
    WANG Wenqing. Study of penetration window technology of explosion proof γ ray detector[J]. Journal of Convergence Information Technology,2012,7(15):366-374. DOI: 10.4156/jcit.vol7.issue15.43
    [16]
    陈捷频,陈钧. 隔爆外壳上玻璃透明件的无应力安装设计[J]. 电气防爆,2009(3):1-5. DOI: 10.3969/j.issn.1004-9118.2009.03.001

    CHEN Jiepin,CHEN Jun. The flameproof installation design of transparent glass in explosion-proof enclosure without stress[J]. Electrical Explosion Protection,2009(3):1-5. DOI: 10.3969/j.issn.1004-9118.2009.03.001
    [17]
    GB/T 3836.22—2017 爆炸性环境 第22部分: 光辐射设备和传输系统的保护措施[S].

    GB3836.22-2017 Explosive atmospheres-part 22: protection of equipment and transmission system using optical radiation[S].
    [18]
    尹晓冬, 王福合. 物理学与世界进步[M]. 合肥: 安徽教育出版社, 2015.

    YIN Xiaodong, WANG Fuhe. Physics and world progress[M]. Hefei: Anhui Education Press, 2015.
    [19]
    江源. 光源发展史[J]. 灯与照明,2010,34(1):54-62. DOI: 10.3969/j.issn.1008-5521.2010.01.015

    JIANG Yuan. Evolution history of light source[J]. Light & Lighting,2010,34(1):54-62. DOI: 10.3969/j.issn.1008-5521.2010.01.015
    [20]
    王晶. X射线血液辐照技术及其临床应用[J]. 中国医疗器械信息,2019,25(21):37-39. DOI: 10.3969/j.issn.1006-6586.2019.21.014

    WANG Jing. X-ray blood irradiation technique and its clinical applications[J]. China Medical Device Information,2019,25(21):37-39. DOI: 10.3969/j.issn.1006-6586.2019.21.014
    [21]
    JANATPOUR K,DENNING L,NELSON K,et al. Comparison of X-ray vs. gamma irradiation of CPDA-1 red cells[J]. Vox Sanguinis,2005,89(4):215-219. DOI: 10.1111/j.1423-0410.2005.00699.x
    [22]
    DODD B,VETTER R J. Replacement of 137Cs irradiators with X-ray irradiators[J]. Health Physics:The Radiation Safety Journal,2009,96(S2):27-30.
    [23]
    杨强. 微型X射线源关键技术研究[D]. 成都: 成都理工大学, 2012.

    YANG Qiang. Researches on key technologies of miniature X-ray source[D]. Chengdu: Chengdu University of Technology, 2012.
    [24]
    荣吉萍. 工业检测和安全检查用X射线管的现状与发展[J]. 真空电子,2015(1):42-45,50.

    RONG Jiping. Present situation and development of X-ray tubes for industrial detection and safety inspection[J]. Vacuum Electronics,2015(1):42-45,50.
    [25]
    STRAZNICKY I. Thermal modeling:a must at the design phase[J]. The Journal of Military Electronics & Computing,2008(6):16-19.
    [26]
    李昊,项名珠,肖建生. 中等功率X射线源的热设计与热仿真[J]. 机械与电子,2014(7):27-30. DOI: 10.3969/j.issn.1001-2257.2014.07.007

    LI Hao,XIANG Mingzhu,XIAO Jiansheng. Thermal design and simulation for medium-power X-ray source[J]. Machinery & Electronics,2014(7):27-30. DOI: 10.3969/j.issn.1001-2257.2014.07.007
  • Related Articles

    [1]ZHANG Jintao, FU Xiang, WANG Ranfeng, WANG Hongwei. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation, 2022, 48(10): 20-25. DOI: 10.13272/j.issn.1671-251x.17989
    [2]REN Huaiwei, ZHANG Shuai, ZHANG Desheng, ZHOU Jie, REN Changzhong, MIAO Xing, LIU Ke, HOU Wei. Research status and development trend of hydraulic support precision pushing and fast follow-up technology[J]. Journal of Mine Automation, 2022, 48(8): 1-9, 15. DOI: 10.13272/j.issn.1671-251x.2022060016
    [3]LIU Qing, HAN Xiuqi, XU Lanxin, QIN Wenguang. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Journal of Mine Automation, 2020, 46(5): 43-48. DOI: 10.13272/j.issn.1671-251x.17520
    [4]GAO Weiyong, ZHANG Minjuan. Research on following automation technology of hydraulic support on fully—mechanized coal mining face[J]. Journal of Mine Automation, 2018, 44(11): 14-17. DOI: 10.13272/j.issn.1671—251x.2018050040
    [5]WANG Feng. Research of precise pushing control scheme for hydraulic support and its applicatio[J]. Journal of Mine Automation, 2017, 43(5): 6-9. DOI: 10.13272/j.issn.1671-251x.2017.05.002
    [6]SHI Yong, LIN Jiang, CUI Zhifang, YUAN Xiaoqin. Mathematical model of automatic following control in the middle of fully mechanized mining face[J]. Journal of Mine Automation, 2016, 42(11): 14-19. DOI: 10.13272/j.issn.1671-251x.2016.11.004
    [7]LI Jun, LIN Fuya. Research of automatic control method of shearer in machinery-tracked automatio[J]. Journal of Mine Automation, 2014, 40(2): 1-4. DOI: 10.13272/j.issn.1671-251x.2014.02.001
    [8]ZHU Jin-yu, LI Guo-lia. Design of machinery-tracked automatic system of hydraulic support[J]. Journal of Mine Automation, 2013, 39(12): 1-4. DOI: 10.7526/j.issn.1671-251X.2013.12.001
    [9]ZHANG She. Development of coal mine automatio[J]. Journal of Mine Automation, 2013, 39(2): 27-33.
  • Cited by

    Periodical cited type(12)

    1. 何勇华. 综放工作面液压支架直线度调整技术研究与实践. 煤矿机械. 2025(02): 153-157 .
    2. 马伟佳,范玫杉,徐冠宇. 煤矿机器人研究进展、关键技术及发展趋势. 机器人技术与应用. 2024(04): 3-10 .
    3. 索永录. 智能综采机组控制目标及采煤机割煤高度控制方法. 西安科技大学学报. 2023(01): 9-17 .
    4. 宋单阳,杨金衡,陶心雅,卢春贵,田慕琴,宋建成. 基于非完整性约束的采煤机定位方法. 工矿自动化. 2022(07): 52-57 . 本站查看
    5. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 .
    6. 贺建伟. 煤矿井下连续采煤机定位方法研究. 工矿自动化. 2021(10): 42-48 . 本站查看
    7. 王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术. 工矿自动化. 2020(05): 39-42+53 . 本站查看
    8. 李文国,刘鑫. 露天矿边帮压煤无人开采导航技术应用研究. 煤炭工程. 2020(06): 59-61 .
    9. 张先韬. 煤矿测井用经纬度获取和磁偏角计算. 矿山测量. 2019(02): 74-78+88 .
    10. 闫建国. 基于惯性导航的工作面直线度检测与控制技术的研究. 机械管理开发. 2019(08): 135-136+149 .
    11. 陈伟. 煤矿井下精确定位系统研究. 工矿自动化. 2019(12): 86-90 . 本站查看
    12. 王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望. 工矿自动化. 2018(11): 18-24 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (179) PDF downloads (26) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return